如圖,在底面是直角梯形的四棱錐  P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=數(shù)學公式,BC=6.
(Ⅰ)求證:BD⊥平面PAC;]
(Ⅱ)求二面角A-PC-D的余弦值.

解法一:(Ⅰ)∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.
,,
∴∠ABD=30,°∠BAC=60°
∴∠AEB=90°,即BD⊥AC
又PA∩AC=A,
∴BD⊥平面PAC.
(Ⅱ)過E作EF⊥PC,垂足為F,連接DF,
∵DE⊥平面PAC,EF是DF在平面PAC上的射影,由三垂線定理知PC⊥DF,
∴∠EFD為二面角A-PC-D的平面角.
又∠DAC=90°-∠BAC=30°
∴DE=ADsin∠DAC=1,AE=ABsin∠ABE=,
又AC=,
∴EC=,PC=8.
由Rt△EFC∽Rt△PAC得
在Rt△EFD中,,

∴二面角A-PC-D的余弦值為
解法二:(Ⅰ)如圖,建立坐標系,則A(0,0,0),B(),,D(0,2,0),P(0,0,4)
,
,
∴BD⊥AP,BD⊥AC,又PA∩AC=A
∴BD⊥平面PAC.
(Ⅱ)設(shè)平面PCD的法向量為,
,
,
,解得

平面PAC的法向量取為
=
∴二面角A-PC-D的余弦值為
分析:解法一:(Ⅰ)根據(jù)PA⊥平面ABCD,BD?平面ABCD,可得BD⊥PA.又可證BD⊥AC,利用線面垂直的判定定理,我們可證BD⊥平面PAC.
(Ⅱ)過E作EF⊥PC,垂足為F,連接DF,則∠EFD為二面角A-PC-D的平面角.在Rt△EFD中,我們可求二面角A-PC-D的余弦值為
解法二:(Ⅰ)建立空間坐標系,利用向量的數(shù)量積,我們可以證明BD⊥AP,BD⊥AC,利用線面垂直的判定定理,我們可證BD⊥平面PAC.
(Ⅱ)設(shè)平面PCD的法向量為,利用,可得,平面PAC的法向量取為,利用,我們可求二面角A-PC-D的余弦值.
點評:本題以四棱錐為載體,考查線面垂直,考查面面角,采用兩種解法,體現(xiàn)了一題多解,又體現(xiàn)了向量解法的優(yōu)越性.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在底面是直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,且∠ADC=arcsin
5
5
,又PA⊥平面ABCD,AD=3AB=3PA=3a,
(I)求二面角P-CD-A的正切值;
(II)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
12

(1)求四棱錐S-ABCD的體積;
(2)求證:面SAB⊥面SBC;
(3)求SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐    P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M為PD中點.
( I ) 求證:MC∥平面PAB;
(Ⅱ)在棱PD上找一點Q,使二面角Q-AC-D的正切值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是直角梯形的四棱錐S-ABCD中,已知∠ABC=90°,SA⊥平面ABCD,AB=BC=2,AD=1.
(1)當SA=2時,求直線SA與平面SCD所成角的正弦值;
(2)若平面SCD與平面SAB所成角的余弦值為
49
,求SA的長.

查看答案和解析>>

同步練習冊答案