9.函數(shù)f(x)=lg(x2-x-6)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-2)B.(3,+∞)C.(-∞,-2)∪(3,+∞)D.(-2,3)

分析 根據(jù)對(duì)數(shù)函數(shù)的真數(shù)大于0,構(gòu)造不等式,解得答案.

解答 解:由x2-x-6>0得:
x∈(-∞,-2)∪(3,+∞),
故函數(shù)f(x)=lg(x2-x-6)的定義域?yàn)椋?∞,-2)∪(3,+∞),
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),熟練掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)$f(x)=\left\{\begin{array}{l}-x+6,x≤2\\ 2+{log_a}x,x>2\end{array}\right.$(a>0,且a≠1)的值域是[4,+∞),則實(shí)數(shù)a的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若點(diǎn)P是兩條異面直線a,b外一點(diǎn),則過P且與a,b都平行的平面?zhèn)數(shù)是( 。﹤(gè).
A.0個(gè)B.1個(gè)C.0或1個(gè)D.無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=log2x+2,則方程f(x)-f′(x)=2的根所在的區(qū)間為( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{{5{x^2}}}{{\sqrt{2-x}}}$+lg(3x+1)的定義域?yàn)椋?$\frac{1}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若0<x1<x2<1,則( 。
A.sinx2-sinx1>lnx2-lnx1B.${e^{x_2}}ln{x_1}<{e^{x_1}}ln{x_2}$
C.${x_1}-{x_2}<{e^{x_1}}-{e^{x_2}}$D.x2e${\;}^{{x}_{1}}$<x1e${\;}^{{x}_{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.對(duì)于兩隨機(jī)事件A,B若P(A∪B)=P(A)+P(B)=1,則事件A,B的關(guān)系是(  )
A.互斥且對(duì)立B.互斥不對(duì)立
C.既不互斥也不對(duì)立D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.分別求滿足下列條件的直線l方程.
(1)將直線l1:y=$\frac{\sqrt{3}}{3}$x+1繞(0,1)點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{6}$得到直線l;
(2)直線l過直線l1:x+3y-1=0與l2:2x-y+5=0的交點(diǎn),且點(diǎn)A(2,1)到l的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)y=2-x+m的圖象不經(jīng)過第一象限,則m的取值范圍是(-∞,-1].

查看答案和解析>>

同步練習(xí)冊(cè)答案