【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)設(shè)定義在上的函數(shù)的最大值為,最小值為,且,求實(shí)數(shù)的取值范圍.
【答案】(1)極大值1,無(wú)極小值;遞減區(qū)間,遞增區(qū)間(2)
【解析】
(1)求導(dǎo)后,解不等式、后即可得單調(diào)區(qū)間,根據(jù)極值的概念即可求得極值;
(2)求導(dǎo)得,按照、、分成3種情況,找到在上的最值,分類(lèi)討論即可得解.
(1),定義域?yàn)?/span>
當(dāng)時(shí),,所以在區(qū)間上為減函數(shù),
當(dāng)時(shí),,所以在區(qū)間上為增函數(shù),
所以極大值,無(wú)極小值;的遞減區(qū)間,遞增區(qū)間.
(2)因?yàn)?/span>,所以
①當(dāng)時(shí),,在上單調(diào)遞減,
由,所以,即,得.
②當(dāng)時(shí),,在上單調(diào)遞增,
所以,即,得.
③當(dāng)時(shí),
在,,在上單調(diào)遞減,
在,,在上單調(diào)遞增.
所以即,
由(1)知在上單調(diào)遞減,
故,而,所以不等式無(wú)解.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長(zhǎng)度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .
(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”,為了響應(yīng)國(guó)家政策,我市環(huán)保部門(mén)對(duì)市民進(jìn)行了一次環(huán)境保護(hù)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的50人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 1 | 2 | 2 | 10 | 9 | 6 |
女 | 0 | 5 | 5 | 5 | 3 | 2 |
若規(guī)定問(wèn)卷得分不低于70分的市民稱(chēng)為“環(huán)境保護(hù)關(guān)注者”,則上圖中表格可得列聯(lián)表如下:
非“環(huán)境保護(hù)關(guān)注者” | 是“環(huán)境保護(hù)關(guān)注者” | 合計(jì) | |
男 | 5 | 25 | 30 |
女 | 10 | 10 | 20 |
合計(jì) | 15 | 35 | 50 |
(1)請(qǐng)完成上述列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“環(huán)境保護(hù)關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱(chēng)為“環(huán)境保護(hù)達(dá)人”,現(xiàn)在從本次調(diào)查的“環(huán)境保護(hù)達(dá)人”中利用分層抽樣的方法抽取4名市民參與環(huán)保知識(shí)問(wèn)答,再?gòu)倪@4名市民中隨機(jī)抽取2人參與座談會(huì),求抽取的2名市民中,既有男“環(huán)境保護(hù)達(dá)人”又有女“環(huán)境保護(hù)達(dá)人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),是的導(dǎo)數(shù).
(1)當(dāng)時(shí),令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);
(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】推進(jìn)垃圾分類(lèi)處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對(duì)垃圾分類(lèi)的了解程度,某社區(qū)居委會(huì)隨機(jī)抽取1000名社區(qū)居民參與問(wèn)卷測(cè)試,并將問(wèn)卷得分繪制頻率分布表如下:
得分 | |||||||
男性人數(shù) | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人數(shù) | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區(qū)隨機(jī)抽取一名居民參與問(wèn)卷測(cè)試,試估計(jì)其得分不低于60分的概率;
(2)將居民對(duì)垃圾分類(lèi)的了解程度分為“比較了解“(得分不低于60分)和“不太了解”(得分低于60分)兩類(lèi),完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對(duì)垃圾分類(lèi)的了解程度”與“性別”有關(guān)?
不太了解 | 比較了解 | |
男性 | ||
女性 |
(3)從參與問(wèn)卷測(cè)試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,連同名男性調(diào)查員一起組成3個(gè)環(huán)保宜傳隊(duì).若從這中隨機(jī)抽取3人作為隊(duì)長(zhǎng),且男性隊(duì)長(zhǎng)人數(shù)占的期望不小于2.求的最小值.
附:
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從廣安市某中學(xué)校的名男生中隨機(jī)抽取名測(cè)量身高,被測(cè)學(xué)生身高全部介于cm和cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組,第二組,...,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人.
(1)求第七組的頻率;
(2)估計(jì)該校名男生的身高的中位數(shù)。
(3)若從樣本中身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,求抽出的兩名男生是同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有3名醫(yī)生,5名護(hù)士、2名麻醉師.
(1)從中選派1名去參加外出學(xué)習(xí),有多少種不同的選法?
(2)從這些人中選出1名醫(yī)生、1名護(hù)士和1名麻醉師組成1個(gè)醫(yī)療小組,有多少種不同的選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在區(qū)間[0,1]上的函數(shù)y=f(x)的圖象如圖所示.對(duì)滿足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:
①f(x1)-f(x2)>x1-x2;
②f(x1)-f(x2)<x1-x2;
③x2f(x1)>x1f(x2);
④.
其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com