精英家教網 > 高中數學 > 題目詳情

【題目】如果對一切實數x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實數a的取值范圍是(
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]

【答案】D
【解析】解:實數x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立 + ≥asinx+1﹣sin2x恒成立, 令f(y)= + ,
則asinx+1﹣sin2x≤f(y)min ,
當y>0時,f(y)= + ≥2 =3(當且僅當y=6時取“=”),f(y)min=3;
當y<0時,f(y)= + ≤﹣2 =﹣3(當且僅當y=﹣6時取“=”),f(y)max=﹣3,f(y)min不存在;
綜上所述,f(y)min=3.
所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.
① 若sinx>0,a≤sinx+ 恒成立,令sinx=t,則0<t≤1,再令g(t)=t+ (0<t≤1),則a≤g(t)min
由于g′(t)=1﹣ <0,
所以,g(t)=t+ 在區(qū)間(0,1]上單調遞減,
因此,g(t)min=g(1)=3,
所以a≤3;
②若sinx<0,則a≥sinx+ 恒成立,同理可得a≥﹣3;
③若sinx=0,0≤2恒成立,故a∈R;
綜合①②③,﹣3≤a≤3.
故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2ex+blnx,且在P(1,f(1))處的切線方程為(3e﹣1)x﹣y+1﹣2e=0,g(x)=( ﹣1)ln(x﹣2)+ +1.
(1)求a,b的值;
(2)證明:f(x)的最小值與g(x)的最大值相等.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的奇函數f(x)滿足f(x+2)=﹣f(x),當x∈[0,1]時,f(x)=2x﹣1,則(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數,且滿足a+b+c=m,求證: ≥3.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xoy中,已知點P(0, ),曲線C的參數方程為 (φ為參數).以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
(Ⅰ)判斷點P與直線l的位置關系并說明理由;
(Ⅱ)設直線l與曲線C的兩個交點分別為A,B,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設M為BD的中點,求異面直線AD與CM所成角的大。ńY果用反三角函數值表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且8sin2
(1)求角A的大小;
(2)若a= ,b+c=3,求b和c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在(0,+∞)上的函數f(x)的導函數為f'(x),滿足x2f'(x)+xf(x)=lnx,f(e)= ,則f(x)(
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值又有極小值
D.既無極大值也無極小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某年高考中,某省10萬考生在滿分為150分的數學考試中,成績分布近似服從正態(tài)分布N(110,100),則分數位于區(qū)間(130,150]分的考生人數近似為( ) (已知若X~N(μ,σ2),則P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544,P(μ﹣3σ<X<μ+3σ)=0.9974.
A.1140
B.1075
C.2280
D.2150

查看答案和解析>>

同步練習冊答案