已知關(guān)于<0對都成立,則實(shí)數(shù)的取值范圍是(     )

 A.[-2,)             B.(-2, ]

 C.(,-2]∪(,)  D.(,-2)∪[,)

 

【答案】

A.

【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061916185757897980/SYS201206191620174851293716_DA.files/image001.png">所以都成立,即,當(dāng)m=-2時,不等式恒成立.,綜上,,應(yīng)選A

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定理:“若a,b為常數(shù),g(x)滿足g(a+x)+g(a-x)=2b,則函數(shù)y=g(x)的圖象關(guān)于點(diǎn)(a,b)中心對稱”.設(shè)函數(shù)f(x)=
x+1-a
a-x
,定義域?yàn)锳.
(1)試證明y=f(x)的圖象關(guān)于點(diǎn)(a,-1)成中心對稱;
(2)當(dāng)x∈[a-2,a-1]時,求證:f(x)∈[-
1
2
, 0]

(3)對于給定的x1∈A,設(shè)計(jì)構(gòu)造過程:x2=f(x1),x3=f(x2),…,xn+1=f(xn).如果xi∈A(i=2,3,4…),構(gòu)造過程將繼續(xù)下去;如果xi∉A,構(gòu)造過程將停止.若對任意x1∈A,構(gòu)造過程都可以無限進(jìn)行下去,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)
成中心對稱,對任意實(shí)數(shù)x都有f(x)=-
1
f(x+
3
2
)
,且f(-1)=1,
f(0)=-2,則f(0)+f(1)+…+f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)函數(shù)f(x)=tanx有無數(shù)個零點(diǎn);
(2)若關(guān)于x的方程((
1
2
)|x|-m=0
有解,則實(shí)數(shù)m的取值范圍是(0,1];
(3)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移
π
6
個單位后,得到的函數(shù)解析式可以表示成f(x)=2sin2(x+
π
6
);
(4)函數(shù)f(x)=
1
2
sinx+
1
2
|sinx|的值域是[-1,1];
(5)已知函數(shù)f(x)=2cosx,若存在實(shí)數(shù)x1,x2,使得對任意的實(shí)數(shù)x都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為2π.
其中正確的命題有
3
3
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西柳鐵一中高三第二次月考文科數(shù)學(xué)卷 題型:選擇題

定義在R上的函數(shù)的圖像關(guān)于點(diǎn)成中心對稱,且對任意實(shí)數(shù)都有,已知,則=(    )

A. -2        B.1        C. 0          D. 670

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:濟(jì)南一模 題型:填空題

已知定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)
成中心對稱,對任意實(shí)數(shù)x都有f(x)=-
1
f(x+
3
2
)
,且f(-1)=1,
f(0)=-2,則f(0)+f(1)+…+f(2010)=______.

查看答案和解析>>

同步練習(xí)冊答案