精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1)
,函數f(x)=(
a
+
b
)•
b
,x∈R
(1)求函數f(x)的最小正周期,最大值和最小值;
(2)求函數f(x)的單調遞增區(qū)間.
分析:(1)根據向量數量積公式和三角恒等變換公式,化簡得f(x)=(
a
+
b
)•
b
=
2
2
sin(2x+
π
4
).再利用三角函數的周期與最值的公式,即可算出f(x)的最小正周期,最大值和最小值;
(2)根據正弦函數單調區(qū)間的公式解關于x的不等式,即可得到函數f(x)的單調遞增區(qū)間.
解答:解:(1)∵
a
=(sinx,
3
2
),
b
=(cosx,-1)
,
f(x)=(
a
+
b
)•
b
=cosx(sinx+cosx)+
1
2
×(-1)

=
1
2
sin2x+
1
2
(1+cos2x)-
1
2
=
2
2
sin(2x+
π
4
).
因此,f(x)的最小正周期T=
2
=π,最大值為
2
2
,最小值為-
2
2
;
(2)令-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ(k∈Z),
得-
8
+
1
2
kπ≤x≤
π
8
+
1
2
kπ(k∈Z),
∴函數f(x)的單調遞增區(qū)間為[-
8
+
1
2
kπ,
π
8
+
1
2
kπ](k∈Z).
點評:本題給出向量
a
b
含有三角函數式的坐標,求f(x)=(
a
+
b
)•
b
的周期、最值與單調區(qū)間.著重考查了向量數量積公式、三角恒等變換公式和三角函數的圖象與性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,
3
)
,
b
=(1,cosθ)
,θ∈(-
π
2
,
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表達式.
(2)用“五點作圖法”畫出函數f(x)在一個周期上的圖象.
(3)寫出f(x)在[-π,π]上的單調遞減區(qū)間.
(4)設關于x的方程f(x)=m在x∈[-π,π]上的根為x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此結論求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1)
,
b
=(2,2)
f(x)=
a
b
+2

①用“五點法”作出函數y=f(x)在長度為一個周期的閉區(qū)間的圖象.
②求函數f(x)的最小正周期和單調增區(qū)間;
③求函數f(x)的最大值,并求出取得最大值時自變量x的取值集合
④函數f(x)的圖象可以由函數y=sin2x(x∈R)的圖象經過怎樣的變換得到?
⑤當x∈[0,π],求函數y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作圖
精英家教網

查看答案和解析>>

同步練習冊答案