【題目】如圖,四棱錐PABCD的底面為正方形,PD底面ABCD.設(shè)平面PAD與平面PBC的交線(xiàn)為.
(1)證明:平面PDC;
(2)已知PDAD1,Q為上的點(diǎn),QB=,求PB與平面QCD所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)利用線(xiàn)面平行的判定定理以及性質(zhì)定理,證得,利用線(xiàn)面垂直的判定定理證得平面,從而得到平面;
(2)根據(jù)題意,建立相應(yīng)的空間直角坐標(biāo)系,得到相應(yīng)點(diǎn)的坐標(biāo),設(shè)出點(diǎn),之后求得平面的法向量以及向量的坐標(biāo),求得,即可得到直線(xiàn)與平面所成角的正弦值.
(1)證明:
在正方形中,,
因?yàn)?/span>平面,平面,
所以平面,
又因?yàn)?/span>平面,平面平面,
所以,
因?yàn)樵谒睦忮F中,底面是正方形,所以
且平面,所以
因?yàn)?/span>
所以平面;
(2)如圖建立空間直角坐標(biāo)系,
因?yàn)?/span>,則有,
設(shè),則有,
因?yàn)?/span>QB=,所以有
設(shè)平面的法向量為,
則,即,
令,則,所以平面的一個(gè)法向量為,則
根據(jù)直線(xiàn)的方向向量與平面法向量所成角的余弦值的絕對(duì)值即為直線(xiàn)與平面所成角的正弦值,所以直線(xiàn)與平面所成角的正弦值等于
所以直線(xiàn)與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若存在滿(mǎn)足,證明成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為的直線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),曲線(xiàn)的參數(shù)方程為(為參數(shù)).以點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求與的極坐標(biāo)方程;
(2)設(shè)與的交點(diǎn)為、,與的交點(diǎn)為、,且,求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】,.
(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線(xiàn)方程.
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求的最大整數(shù)值;
②證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】日晷是中國(guó)古代用來(lái)測(cè)定時(shí)間的儀器,利用與晷面垂直的晷針投射到晷面的影子來(lái)測(cè)定時(shí)間.把地球看成一個(gè)球(球心記為O),地球上一點(diǎn)A的緯度是指OA與地球赤道所在平面所成角,點(diǎn)A處的水平面是指過(guò)點(diǎn)A且與OA垂直的平面.在點(diǎn)A處放置一個(gè)日晷,若晷面與赤道所在平面平行,點(diǎn)A處的緯度為北緯40°,則晷針與點(diǎn)A處的水平面所成角為( )
A.20°B.40°
C.50°D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿(mǎn)足,且是的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿(mǎn)足:對(duì)于任意正數(shù),都有,且,則稱(chēng)函數(shù)為“L函數(shù)”.
(1)試判斷函數(shù)與是否是“L函數(shù)”;
(2)若函數(shù)為“L函數(shù)”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)為“L函數(shù)”,且,求證:對(duì)任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域?yàn)?/span>,函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>.
(1)求定義域和值域;
(2)試用單調(diào)性的定義法解決問(wèn)題:若存在實(shí)數(shù),使得函數(shù)在上單調(diào)遞減,上單調(diào)遞增,求實(shí)數(shù)的取值范圍并用表示;
(3)是否存在實(shí)數(shù),使成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com