(本題滿分10分)   如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線弧OB上求一點M,使得過M所作的y=x2的切線PQ與OA,AB圍成的三角形PQA面積最大。

                                                 

 

【答案】

,

【解析】

試題分析:如圖,設(shè)點M(t,t2),容易求出過點M的切線的斜率為2t,即切線方程為y-t2=2t(x-t),(0≤t≤8)

當(dāng)t=0時,切線為y=0,△PQA不存在,所以(0<t≤8).

在切線方程中令y=0,得到P點的橫坐標(biāo)為,令x=8,得到Q點的縱坐標(biāo)為16t-t2

所以SPQA= (8-)(16t-t2),

令S′(t)=(8-)(8-)=0;

解可得得t=16(舍去)或t=;

由二次函數(shù)的性質(zhì)分析易得,

t=是SPQA=(8-)(16t-t2)的極大值點;

從而當(dāng)t=時,面積S(t)有最大值Smax=S()=,此時M(,

考點:本題主要考查導(dǎo)數(shù)的幾何意義的應(yīng)用,應(yīng)用導(dǎo)數(shù)求函數(shù)的最值問題。

點評:本題符合高考考試大綱,是一道頗具代表性的題目。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 17.本題滿分10分已知函數(shù)的圖象在y軸上的截距為,相鄰的兩個最值點是(1)求函數(shù);(2)設(shè),問將函數(shù)的圖像經(jīng)過怎樣的變換可以得到 的圖像?(3)畫出函數(shù)在區(qū)間上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

(Ⅰ)設(shè),求證:;

(Ⅱ)設(shè),求證:三數(shù),,中至少有一個不小于2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;

⑵求A1B與平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚州市寶應(yīng)縣高三下學(xué)期期初測試數(shù)學(xué)試卷 題型:解答題

(本題滿分10分)

如圖,已知正三棱柱的所有棱長都為2,為棱的中點,

(1)求證:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分10分)

如圖,要計算西湖岸邊兩景點的距離,由于地形的限制,需要在岸上選取兩點,現(xiàn)測得,,, ,,求兩景點的距離(精確到0.1km).參考數(shù)據(jù):  

 

 

查看答案和解析>>

同步練習(xí)冊答案