分析 (1)由題意求得a,c的值,結(jié)合隱含條件求得b,則橢圓方程可求;
(2)設(shè)出P點(diǎn)坐標(biāo)及直線l的方程,聯(lián)立直線方程與橢圓方程求出|MN|,再由點(diǎn)到直線的距離公式求出P到直線l的距離,設(shè)出過點(diǎn)P與直線l平行的直線l1:y=kx+m.聯(lián)立直線方程與橢圓方程,由判別式為0得到m與k的關(guān)系,
再由兩平行線間的距離公式求出兩平行線間的距離大于P到直線l的距離得答案.
解答 解:(1)由題意,$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{a=|BF|=\sqrt{2}}\end{array}\right.$,得c=1,∴b2=a2-c2=1.
則橢圓E的方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)存在.
設(shè)點(diǎn)P(x,y),直線l的方程為y=kx.
由$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,有${x}^{2}=\frac{2}{1+2{k}^{2}}$,則|MN|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$=$\frac{2\sqrt{2}\sqrt{1+{k}^{2}}}{\sqrt{1+2{k}^{2}}}$.
則點(diǎn)P到直線l的距離為$\frac{2×\frac{2\sqrt{2}}{3}}{|MN|}$=$\frac{2\sqrt{1+2{k}^{2}}}{3\sqrt{1+{k}^{2}}}$.
設(shè)過點(diǎn)P與直線l平行的直線l1:y=kx+m.
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-2=0.
由△=0,解得m=±$\sqrt{1+2{k}^{2}}$.
此時(shí)l與l1 的距離為$\frac{\sqrt{1+2{k}^{2}}}{\sqrt{1+{k}^{2}}}>\frac{2\sqrt{1+2{k}^{2}}}{3\sqrt{1+{k}^{2}}}$.
則在橢圓E上存在點(diǎn)P,使得△PMN的面積為$\frac{2\sqrt{2}}{3}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{π}{6},\frac{5π}{6}}]$ | B. | $[{-\frac{π}{2},\frac{π}{2}}]$ | C. | $[{-\frac{π}{12},\frac{4π}{3}}]$ | D. | $[{-\frac{π}{4},0}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$ | B. | $-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$ | D. | $-\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com