如圖所示,在直三棱柱ABC-A1B1C1中,已知AB=BC=1,∠ABC=90°,數(shù)學(xué)公式,D,E分別為BB1、AC的中點(diǎn)
(Ⅰ)證明:BE∥平面AC1D;
(Ⅱ)求二面角A1-AD-C1的大。

(Ⅰ)證明:以BA所在的直線為x軸,BC所在的直線為y軸,BB1所在的直線為z軸,建立空間直角坐標(biāo)系,則A(1,0,0),,,,,
設(shè)平面AC1D的一個(gè)法向量為,
則由,
取x=1,y=-1,,所以法向量,
,,
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/4106.png' />?平面AC1D,所以BE∥平面AC1D.
(Ⅱ)由(1)可知,平面AC1D的法向量為
又平面A1AD的法向量為,所以=,
由圖可知,所求的二面角為銳角,所以二面角A1-AD-C1的大小為60°.
分析:(Ⅰ)以BA所在的直線為x軸,BC所在的直線為y軸,BB1所在的直線為z軸,建立空間直角坐標(biāo)系,先求平面AC1D的一個(gè)法向量,再證明:即可;
(Ⅱ)求二面角A1-AD-C1的大小,只需求兩平面的法向量的夾角即可.
點(diǎn)評(píng):本題以直三棱柱為載體,考查線面平行,考查面面角,關(guān)鍵是建立空間直角坐標(biāo)系,用坐標(biāo)表示向量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點(diǎn),P是CD上的點(diǎn).
(1)求直線PE與平面ABC所成角的正切值的最大值;
(2)求證:直線PE∥平面A1BF;
(3)求直線PE與平面A1BF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=
a或2a
a或2a
時(shí),CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點(diǎn).
(Ⅰ)求證:B1C1⊥平面ABB1A1;
(Ⅱ)設(shè)E是CC1的中點(diǎn),試求出A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求證:B1C1⊥平面ABB1A1;
(3)在CC1上是否存在一點(diǎn)E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案