在區(qū)間[-
π
2
,
π
2
]
上隨機(jī)取一個(gè)數(shù)x,cosx的值介于
1
2
和1之間的概率是
2
3
2
3
分析:根據(jù)余弦函數(shù)的圖象和性質(zhì),求出cosx的值介于
1
2
和1之間時(shí),自變量x的取值范圍,代入幾何概型概率計(jì)算公式,可得答案.
解答:解:區(qū)間[-
π
2
,
π
2
]
上隨機(jī)取一個(gè)數(shù)x,
當(dāng)x∈[-
π
3
,
π
3
]
時(shí),cosx的值介于
1
2
和1之間
∴在區(qū)間[-
π
2
π
2
]
上隨機(jī)取一個(gè)數(shù)x,cosx的值介于
1
2
和1之間的概率P=
3
π
=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是幾何概型,余弦型函數(shù)的圖象和性質(zhì),其中求出cosx的值介于
1
2
和1之間時(shí),自變量x的取值范圍,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(sin2
π+2x
4
,cosx+sinx)
,
b
=(4sin x,cos x-sin x),f(x)=
a
b

(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間[-
π
2
3
]
是增函數(shù),求ω的取值范圍;
(3)設(shè)集合A={x|
π
6
≤x≤
3
}
,B={x||f(x)-m|<2},若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c在區(qū)間[-2,2]上的最大值、最小值分別是M、m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,記g(a)=M+m,求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c在區(qū)間[-2,2]上的最大值、最小值分別為M、m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={2},且a≥1,記g(a)=M+m,求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(x)在區(qū)間[-2,2]上的最大值、最小值分別為M、m,集合A={x|f(x)≤x}.
(1)若A=[1,2],且f(0)=2,求M和m的值;
(2)若A={2},a∈[2n,+∞)(n∈N+),設(shè)M-m=g(a),求g(a)的表達(dá)式;
(3)設(shè)g(a)的最小值為h(n),估算使h(n)∈[103,104]的一切n的取值.(可以直接寫出你的結(jié)果,不必詳細(xì)說(shuō)理).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinx+1.
(Ⅰ)設(shè)ω為大于0的常數(shù),若f(ωx)在區(qū)間[-
π
2
,
3
]
上單調(diào)遞增,求實(shí)數(shù)ω的取值范圍;
(Ⅱ)設(shè)集合A={x|
π
6
≤x≤
3
}
,B={x||f(x)-m|<2},若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案