對(duì)于直角坐標(biāo)平面內(nèi)任意兩點(diǎn)A(x1,y1)、B(x2,y2),定義它們之間的一種“新距離”:|AB|=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上.則|AC|+|BC|=|AB|;
②在△ABC中,若∠C=90°,則|AC|2+|CB|2=|AB|2
③在△ABC中,|AC|+|CB|>|AB|.
其中的真命題為


  1. A.
    ①②③
  2. B.
    ①②
  3. C.
  4. D.
    ②③
C
分析:對(duì)于①若點(diǎn)C在線段AB上,設(shè)C點(diǎn)坐標(biāo)為(x0,y0)然后代入驗(yàn)證顯然|AC|+|CB|=|AB|成立.成立故正確.
對(duì)于②平方后不能消除x0,y0,命題不成立;
對(duì)于③在△ABC中,用坐標(biāo)表示|AC|+|CB|然后根據(jù)絕對(duì)值不等式可得到大于|AB|不成立,故可得到答案.
解答:對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),
定義它們之間的一種“距離”:|AB|=|x2-x1|+|y2-y1|.
對(duì)于①若點(diǎn)C在線段AB上,設(shè)C點(diǎn)坐標(biāo)為(x0,y0),x0在x1、x2之間,y0在y1、y2之間,
則|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|=|x2-x1|+|y2-y1|=|AB|成立,故①正確.
對(duì)于②平方后不能消除x0,y0,命題不成立;
對(duì)于③在△ABC中,|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|≥|(x0-x1)+(x2-x0)|+|(y0-y1)+(y2-y0)|=|x2-x1|+|y2-y1|=|AB|.③不一定成立
∴命題①成立,
故選:C.
點(diǎn)評(píng):此題主要考查新定義的問題,對(duì)于此類型的題目需要認(rèn)真分析題目的定義再求解,切記不可脫離題目要求.屬于中檔題目.本題的易錯(cuò)點(diǎn)在于不等式:|a|+|b|≥|a+b|忘記等號(hào)也可以成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•鹽城一模)在平面直角坐標(biāo)平面內(nèi),不難得到“對(duì)于雙曲線xy=k(k>0)上任意一點(diǎn)P,若點(diǎn)p在x軸、y軸上的射影分別為M、N,則|PM|-|PN|必為定值k”.類比于此,對(duì)于雙曲線
x2
a2
-
y2
b2
(a>0,b>0)上任意一點(diǎn)P,類似的命題為:
若點(diǎn)P在兩漸近線上的射影分別為M、N,則|PM|•|PN|必為定值
a2b2
a2+b2
若點(diǎn)P在兩漸近線上的射影分別為M、N,則|PM|•|PN|必為定值
a2b2
a2+b2

查看答案和解析>>

同步練習(xí)冊答案