如圖一,平面四邊形關(guān)于直線對稱,.把沿折起(如圖二),使二面角的余弦值等于.對于圖二,完成以下各小題:
(1)求兩點間的距離;
(2)證明:平面;
(3)求直線與平面所成角的正弦值.
(1)2;(2)證明詳見解析;(3).
解析試題分析:(1)取的中點,先證得就是二面角的平面角,再在中利用余弦定理即可求得兩點間的距離;(2)欲證線面垂直:平面,轉(zhuǎn)化為證明線線垂直:,,即可;(3)欲求直線與平面所成角,先結(jié)合(1)中的垂直關(guān)系作出直線與平面所成角,最后利用直角三角形中的邊角關(guān)系即可求出所成角的正弦值.
試題解析:(1)取的中點,連接,
由,得:,
就是二面角的平面角,.
在中,
.
(2)由,,
,
, 又平面.
(3)方法一:由(1)知平面平面
∴平面平面平面平面,
作交于,則平面,
就是與平面所成的角.
方法二:設(shè)點到平面的距離為,
∵
于是與平面所成角的正弦為.
方法三:以所在直線分別為軸,軸和軸建立空間直角坐標系,
則.
設(shè)平面的法向量為n,則
n, n,
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中,,頂點在底面上的射影恰為點,.
(1)證明:平面平面;
(2 )若點為的中點,求出二面角的余弦值.
(1)證明:平面平面;
(2)若點為的中點,求出二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面內(nèi),,,P為平面外一個動點,且PC=,
(1)問當PA的長為多少時,
(2)當的面積取得最大值時,求直線BC與平面PAB所成角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD,底面ABCD是,邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正三棱柱的底面邊長是,側(cè)棱長是,是的中點.
(1)求證:∥平面;
(2)求二面角的大小;
(3)在線段上是否存在一點,使得平面平面,若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點.
(1)若CD=2,平面ABCD⊥平面DCEF,求MN的長;
(2)用反證法證明:直線ME與BN是兩條異面直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在長方體ABCDA1B1C1D1的A1C1面上有一點P(如圖所示,其中P點不在對角線B1D1)上.
(1)過P點在空間作一直線l,使l∥直線BD,應(yīng)該如何作圖?并說明理由;
(2)過P點在平面A1C1內(nèi)作一直線m,使m與直線BD成α角,其中α∈,這樣的直線有幾條,應(yīng)該如何作圖?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com