【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3萬元、2萬元,甲、乙產(chǎn)品都需要在兩種設(shè)備上加工,在每臺上加工1件甲所需工時(shí)分別是12,加工1件乙所需工時(shí)分別為2、1, 兩種設(shè)備每月有效使用臺時(shí)數(shù)分別為400500,如何安排生產(chǎn)可使收入最大?

【答案】800萬

【解析】試題分析:先設(shè)甲、乙兩種產(chǎn)品月產(chǎn)量分別為件,寫出約束條件、目標(biāo)函數(shù),欲求生產(chǎn)收入最大值,即求可行域中的最優(yōu)解,將目標(biāo)函數(shù)看成是一條直線,分析目標(biāo)函數(shù)與直線截距的關(guān)系,進(jìn)而求出最優(yōu)解.

試題解析:

設(shè)每月安排生產(chǎn)甲產(chǎn)品件,乙產(chǎn)品件,由題意知, ,目標(biāo)函數(shù),可行域如圖所示:

,可得點(diǎn)坐標(biāo)為,由目標(biāo)函數(shù)得: 當(dāng)直線截距最大時(shí), 最大,所以當(dāng)直線過點(diǎn)時(shí),即當(dāng)時(shí), 取到最大值為800

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,以橢圓的上頂點(diǎn)為圓心作圓,

,圓與橢圓在第一象限交于點(diǎn),在第二象限交于點(diǎn).

(1)求橢圓的方程;

(2)求的最小值,并求出此時(shí)圓的方程;

(3)設(shè)點(diǎn)是橢圓上異于的一點(diǎn),且直線分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),求證:

為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,角的平分線于點(diǎn),設(shè).(1)求;(2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商從外地一水殖廠購進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類統(tǒng)計(jì)結(jié)果如下圖:

(1)記事件為:“從這批小龍蝦中任取一只,重量不超過35的小龍蝦”,求的估計(jì)值;

(2)試估計(jì)這批小龍蝦的平均重量;

(3)為適應(yīng)市場需求,制定促銷策略.該經(jīng)銷商又將這批小龍蝦分成三個(gè)等級,并制定出銷售單價(jià),如下表:

等級

一等品

二等品

三等品

重量(

單價(jià)(元/只)

1.2

1.5

1.8

試估算該經(jīng)銷商以每千克至多花多少元(取整數(shù))收購這批小龍蝦,才能獲得利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中a≠0,q:實(shí)數(shù)x滿足.

(I)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍.

(II)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f1(x)、f2(x)、h(x),如果存在實(shí)數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x)、f2(x)的和諧函數(shù).
(1)已知函數(shù)f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,試判斷h(x)是否為f1(x)、f2(x)的和諧函數(shù)?并說明理由;
(2)已知h(x)為函數(shù)f1(x)=log3x,f2(x)=log x的和諧函數(shù),其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形, , , , , 是等邊三角形,且側(cè)面底面, 分別是 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求平面與平面所成的二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為SnnN*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1S11=11b4

)求{an}{bn}的通項(xiàng)公式;

)求數(shù)列{a2nbn}的前n項(xiàng)和(nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等制劃分標(biāo)準(zhǔn)為:85分及以上,記為等;分?jǐn)?shù)在內(nèi),記為等;分?jǐn)?shù)在內(nèi),記為等;60分以下,記為等.同時(shí)認(rèn)定為合格, 為不合格.已知甲,乙兩所學(xué)校學(xué)生的原始成績均分布在內(nèi),為了比較兩校學(xué)生的成績,分別抽取50名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì),按照的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級為的所有數(shù)據(jù)莖葉圖如圖2所示.

(Ⅰ)求圖1中的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;

(Ⅱ)在選取的樣本中,從甲,乙兩校等級的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用表示所抽取的3名學(xué)生中甲校的學(xué)生人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案