已知服從正態(tài)分布N(μ,σ2)的隨機(jī)變量在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.3%,95.4%和99.7%.某校高一年級1000名學(xué)生的某次考試成績服從正態(tài)分布N(90,152),則此次成績在(60,120)范圍內(nèi)的學(xué)生大約有( 。
A、997人B、972人
C、954人D、683人
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:變量服從正態(tài)分布N(90,152),即服從均值為90分,方差為225的正態(tài)分布,成績在(60,120)范圍內(nèi)即在(μ-2σ,μ+σ)內(nèi)取值,其概率為:95.4%,從而得出成績在(60,120)范圍內(nèi)的學(xué)生人數(shù).
解答: 解:∵考試成績服從正態(tài)分布N(90,152),
即服從均值為90分,方差為225的正態(tài)分布,
∵成績在(60,120)范圍內(nèi)即在(μ-2σ,μ+2σ)內(nèi)取值,其概率為:95.4%,
從而得出成績在(60,120)范圍內(nèi)的學(xué)生大約是:1000×95.4%=954人.
故選:C.
點評:本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查曲線的變化特點,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

粗細(xì)都是1cm一組圓環(huán)依次相扣,懸掛在某處,最上面的圓環(huán)外直徑是20cm,每個圓環(huán)的外直徑皆比它上面的圓環(huán)的外直徑少1cm. 那么從上向下數(shù)第3個環(huán)底部與第1個環(huán)頂部距離是
 
;記從上向下數(shù)第n個環(huán)底部與第一個環(huán)頂部距離是an,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-x2
-2
x+2
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=sin(
2
+
π
4
)(n∈N+),則f(1)+f(2)+f(3)+…+f(2013)+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某四面體的三視圖均為直角三角形,如圖,則該四面體的表面積為(  )
A、72+24
2
B、96+24
2
C、126
D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log2x<log3y<1,那么(  )
A、x<y<3
B、y<x<3
C、3<y<x
D、3<x<y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3x,則f(27)=(  )
A、3B、9C、27D、81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列曲線的所有切線構(gòu)成的集合中,存在無數(shù)對互相垂直的切線的曲線是( 。
A、f(x)=cosx
B、f(x)=ex
C、f(x)=x3
D、f(x)=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+φ)(|φ|<
π
2
)的圖象向左平移
π
6
個單位后的一條對稱軸為x=
π
4
,則φ的取值為(  )
A、
π
12
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

同步練習(xí)冊答案