【題目】已知函數(shù),其中
.
(Ⅰ)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)若函數(shù)有唯一零點(diǎn),求
的值.
【答案】(Ⅰ);(Ⅱ)
【解析】
(Ⅰ)時(shí),求出導(dǎo)函數(shù),求出
,將
代入到
中得到曲線
在點(diǎn)
處的切線的斜率,求出
,然后利用點(diǎn)斜式求出曲線
在點(diǎn)
處的切線方程.
(Ⅱ)先利用導(dǎo)數(shù)證明函數(shù)在R上有唯一零點(diǎn)
,且函數(shù)
在
上遞,在
上遞增,所以函數(shù)
在
處取得最小值
,再根據(jù)函數(shù)
有唯一零點(diǎn)可得
,然后根據(jù)
以及
聯(lián)立消去
,得到
,然后構(gòu)造函數(shù)
,通過導(dǎo)數(shù)的方法可得
有唯一零點(diǎn)
,且
,最后將
代入到
可以解得
的值.
(Ⅰ)當(dāng)時(shí),
.
.
.
又,
曲線
在點(diǎn)
處的切線方程為
,即
.
(Ⅱ).
令,則
.
,
函數(shù)
在
僅有一個(gè)零點(diǎn).
存在
,使得
.
即存在滿足
時(shí),
.
當(dāng)
,即
時(shí),
.
在
上單調(diào)遞減;
當(dāng),即
時(shí),
.
在
上單調(diào)遞增.
又當(dāng)時(shí),
,
,
;
當(dāng)時(shí),
,
.
當(dāng)
時(shí),
,
當(dāng)
時(shí),
.
由題意,函數(shù)
有唯一零點(diǎn)時(shí),必有
.①
又,②
由①②消去,得
.
令.
,
單調(diào)遞增.
又,
方程
有唯一解
.
將代入
,解得
.
當(dāng)函數(shù)
有唯一零點(diǎn)時(shí),
的值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新冠肺炎疫情的影響下,南充高中響應(yīng)“停課不停教,停課不停學(xué)”的號召進(jìn)行線上教學(xué),高二年級的甲乙兩個(gè)班中,需根據(jù)某次數(shù)學(xué)測試成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次測試他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是86.
(1)求出x,y的值,且分別求甲乙兩個(gè)班中5名學(xué)生成績的方差,并根據(jù)結(jié)
果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽?
(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
,
.
(1)若數(shù)列是等差數(shù)列,且
,求實(shí)數(shù)
的值;
(2)若數(shù)列滿足
(
),且
,求證:
是等差數(shù)列;
(3)設(shè)數(shù)列是等比數(shù)列,試探究當(dāng)正實(shí)數(shù)
滿足什么條件時(shí),數(shù)列
具有如下性質(zhì)
:對于任意的
(
),都存在
,使得
,寫出你的探究過程,并求出滿足條件的正實(shí)數(shù)
的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在
的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.
產(chǎn)品質(zhì)量/毫克 | 頻數(shù) |
(Ⅰ)以樣本的頻率作為概率,試估計(jì)從甲流水線上任取件產(chǎn)品,求其中不合格品的件數(shù)
的數(shù)學(xué)期望.
甲流水線 | 乙流水線 | 總計(jì) | |
合格品 | |||
不合格品 | |||
總計(jì) |
(Ⅱ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動包裝流水線的選擇有關(guān)?
(Ⅲ)由乙流水線的頻率分布直方圖可以認(rèn)為乙流水線生產(chǎn)的產(chǎn)品質(zhì)量服從正態(tài)分布
,求質(zhì)量
落在
上的概率.
參考公式:
參考數(shù)據(jù):
參考公式:
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
(
),定點(diǎn)
,
,其中
為正實(shí)數(shù).
(1)當(dāng)時(shí),判斷直線
與圓
的位置關(guān)系;
(2)當(dāng)時(shí),若對于圓
上任意一點(diǎn)
均有
成立(
為坐標(biāo)原點(diǎn)),求實(shí)數(shù)
的值;
(3)當(dāng)時(shí),對于線段
上的任意一點(diǎn)
,若在圓
上都存在不同的兩點(diǎn)
,使得點(diǎn)
是線段
的中點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形
為邊長為
的正方形,△ABE和△BCF均為正三角形,在三棱錐
中:
(I)證明:平面
平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點(diǎn)在棱
上,滿足
,
,點(diǎn)
在棱
上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|,z的實(shí)部大于0,z2的虛部為2.
(1)求復(fù)數(shù)z;
(2)設(shè)復(fù)數(shù)z,z2,z﹣z2之在復(fù)平面上對應(yīng)的點(diǎn)分別為A,B,C,求()
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. (-∞,0) B. C. (0,1) D. (0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某圓的極坐標(biāo)方程為,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)中
的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com