分析 函數(shù)f(x)=-|3x+a|關(guān)于x=-$\frac{a}{3}$對稱,利用函數(shù)f(x)=-|3x+a|在區(qū)間[-2,+∞)上是減函數(shù),可得-$\frac{a}{3}$≤-2,即可求出實數(shù)a取值范圍.
解答 解:函數(shù)f(x)=-|3x+a|關(guān)于x=-$\frac{a}{3}$對稱,
∵函數(shù)f(x)=-|3x+a|在區(qū)間[-2,+∞)上是減函數(shù),
∴-$\frac{a}{3}$≤-2,
∴a≥6,
故答案為a≥6.
點評 本題考查求實數(shù)a取值范圍,考查函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-80]∪[-16,+∞) | B. | [-80,-16] | C. | (-∞,16]∪[80,+∞) | D. | [16,80] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [3,+∞) | B. | [0,+∞) | C. | (-∞,0] | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}+\frac{π}{2}$ | B. | $\frac{1}{2}-\frac{π}{2}$ | C. | $\frac{1}{4}-\frac{1}{2π}$ | D. | $\frac{1}{4}+\frac{1}{2π}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M=P | B. | P?M | C. | M?P | D. | M∪P=R |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com