如圖,斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055180206.png)
的直線過拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055227818.png)
的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240300552895828.png)
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055305502.png)
,求拋物線的方程;
(Ⅱ)求△ABM面積
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055320301.png)
的最大值.
(I)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055336526.png)
;(II)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055383815.png)
.
試題分析:(I) 寫出直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055398396.png)
的方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055461819.png)
聯(lián)立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055492986.png)
,消去
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055508310.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055523812.png)
.根據(jù)弦長公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055695849.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055710433.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055336526.png)
.(II)根據(jù)(I) 設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055757927.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055773400.png)
到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055398396.png)
的距離:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240300558041163.png)
而M在直線AB上方,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055866942.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240300558821193.png)
則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055944916.png)
,所以當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055960487.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055991321.png)
取最大值
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056007551.png)
此時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055383815.png)
.
試題解析:(I) 根據(jù)條件得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055461819.png)
則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055492986.png)
,消去
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055508310.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055523812.png)
.
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056100858.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056116589.png)
,又拋物線定義得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055695849.png)
根據(jù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056147507.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055710433.png)
,拋物線方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055336526.png)
.
(II)由(I) 知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056178619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056225815.png)
設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055757927.png)
則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055773400.png)
到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055398396.png)
的距離:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240300558041163.png)
由M在直線AB上方,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055866942.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240300558821193.png)
,由(I)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055944916.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056334195.png)
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055960487.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055991321.png)
取最大值
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030056007551.png)
此時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030055383815.png)
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
定義:對于兩個雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025336.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025372.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025336.png)
的實軸是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025372.png)
的虛軸,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025336.png)
的虛軸是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025372.png)
的實軸,則稱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025336.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809025372.png)
為共軛雙曲線.現(xiàn)給出雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809134596.png)
和雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809150617.png)
,其離心率分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809165402.png)
.
(1)寫出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809165384.png)
的漸近線方程(不用證明);
(2)試判斷雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809134596.png)
和雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809150617.png)
是否為共軛雙曲線?請加以證明.
(3)求值:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031809212532.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的中心在原點,焦點在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559147267.png)
軸上,離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559162455.png)
,長軸長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559178392.png)
,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559193636.png)
交橢圓于不同的兩點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559209414.png)
.
(1)求橢圓的方程;
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559225339.png)
的取值范圍;
(3)若直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559240282.png)
不經(jīng)過橢圓上的點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559240598.png)
,求證:直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030559256608.png)
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240304004461085.png)
的左焦點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400462302.png)
,離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400477413.png)
,過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400462302.png)
且與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400508266.png)
軸垂直的直線被橢圓截得的線段長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400508344.png)
(1)求橢圓方程;
(2)過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400524533.png)
的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400540280.png)
與橢圓交于不同的兩點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400555423.png)
,當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400571517.png)
面積最大時,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030400602419.png)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
矩形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818400524.png)
的中心在坐標原點,邊
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818415396.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818431266.png)
軸平行,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818415396.png)
=8,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818462378.png)
=6.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818462594.png)
分別是矩形四條邊的中點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818478502.png)
是線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818493382.png)
的四等分點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818509542.png)
是線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818525395.png)
的四等分點.設直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818540399.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818556410.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818571399.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818587424.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818603401.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818618410.png)
的交點依次為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818634602.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240258186658040.jpg)
(1)求以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818681378.png)
為長軸,以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818696409.png)
為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818634602.png)
都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818493382.png)
的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818743297.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818759704.png)
等分點從左向右依次為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818774792.png)
,線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818525395.png)
的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818743297.png)
等分點從上向下依次為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818821778.png)
,那么直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025818821881.png)
與哪條直線的交點一定在橢圓Q上?(寫出結果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729821312.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240257298531084.png)
的左、右焦點和短軸的兩個端點構成邊長為2的正方形.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240257298684283.jpg)
(Ⅰ)求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729899314.png)
的方程;
(Ⅱ)過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729915528.png)
的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729931280.png)
與橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729962313.png)
相交于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729977300.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729993309.png)
兩點.點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025730118544.png)
,記直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025730133510.png)
的斜率分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025730149456.png)
,當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025730180451.png)
最大時,求直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025729931280.png)
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210848339.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252108631085.png)
的左、右焦點分別是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210879333.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210894353.png)
,下頂點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210910297.png)
,線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210926376.png)
的中點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210941304.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210957292.png)
為坐標原點),如圖.若拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210957372.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210972507.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210988331.png)
軸的交點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210941304.png)
,且經(jīng)過
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210879333.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210894353.png)
兩點.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240252110354616.jpg)
(Ⅰ)求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210848339.png)
的方程;
(Ⅱ)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025211066725.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025211082357.png)
為拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210957372.png)
上的一動點,過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025211082357.png)
作拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210957372.png)
的切線交橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025210848339.png)
于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025211253290.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025211269328.png)
兩點,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025211284607.png)
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240217377761129.png)
的左右焦點為F
1,F(xiàn)
2,離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021737791414.png)
,以線段F
1 F
2為直徑的圓的面積為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021737807309.png)
, (1)求橢圓的方程;(2) 設直線l過橢圓的右焦點F
2(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351258336.png)
與雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351273372.png)
有共同的焦點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351289587.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351304579.png)
,橢圓的一個短軸端點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351351309.png)
,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351367422.png)
與雙曲線的一條漸近線平行,橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351258336.png)
與雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351273372.png)
的離心率分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351414406.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030351414412.png)
取值范圍為( )
查看答案和解析>>