【題目】已知關(guān)于x的不等式.
當(dāng)時,解不等式;
當(dāng)時,解不等式.
【答案】(1){x|x<﹣2或x>1};(2)見解析
【解析】
(1)a=﹣1時,不等式化為﹣x2﹣x+2<0,求解即可;
(2)不等式化為(ax﹣2)(x﹣1)<0,討論a=0、a>0和a<0時,求出對應(yīng)的解集.
(1)當(dāng)a=﹣1時,此不等式為﹣x2﹣x+2<0,
可化為x2+x﹣2>0,
化簡得(x+2)(x﹣1)>0,
解得即{x|x<﹣2或x>1};
(2)不等式ax2﹣(a+2)x+2<0化為(ax﹣2)(x﹣1)<0,
當(dāng)a=0時,x>1;
當(dāng)a>0時,不等式化為(x)(x﹣1)<0,
若1,即a>2,解不等式得x<1;
若1,即a=2,解不等式得x∈;
若1,即0<a<2,解不等式得1<x;
當(dāng)a<0時,不等式(x)(x﹣1)>0,解得x或x>1;
綜上所述:當(dāng)a=0,不等式的解集為{x|x>1};
當(dāng)a<0時,不等式的解集為{x|x或x>1};
當(dāng)0<a<2時,不等式的解集為{x|1<x};
當(dāng)a=2時,不等式的解集為;
當(dāng)a>2時,不等式的解集為{x|x<1}.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:
甲:82,81,79,78,95,88,93,84
乙:92,95,80,75,83,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個)考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)有著輝煌和燦爛的歷史,成書于公元一世紀(jì)的數(shù)學(xué)著作《九章算術(shù)》中有一道關(guān)于數(shù)列的題目:“今有良馬與駑馬發(fā)長安至齊。齊去長安三千里。良馬初日行一百九十三里,日增十三里。駑馬初日行九十七里,日減半里。良馬先至齊,復(fù)還迎駑馬。問幾何日相逢及各行幾何?”根據(jù)你所學(xué)數(shù)列知識和數(shù)學(xué)運算技巧計算兩馬相逢時是在出發(fā)后的第_______天(寫出整數(shù)即可).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)用分段函數(shù)的形式表示函數(shù)f(x);
(2)在平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;
(3)在同一平面直角坐標(biāo)系中,再畫出函數(shù)g(x)= (x>0)的圖象(不用列表),觀察圖象直接寫出當(dāng)x>0時,不等式f(x)> 的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】被嘉定著名學(xué)者錢大昕贊譽為“國朝算學(xué)第一”的清朝數(shù)學(xué)家梅文鼎曾創(chuàng)造出一類“方燈體”,“燈者立方去其八角也”,如圖所示,在棱長為的正方體中,點為棱上的四等分點.
(1)求該方燈體的體積;
(2)求直線和的所成角;
(3)求直線和平面的所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)時,,現(xiàn)已畫出函數(shù)在y軸左側(cè)的圖象,如圖所示,請根據(jù)圖象.
(1)將函數(shù)的圖象補充完整,并寫出函數(shù)的遞增區(qū)間;
(2)寫出函數(shù)的解析式;
(3)若函數(shù),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠擬制造一個如圖所示的容積為36π立方米的有蓋圓錐形容器.
(1)若該容器的底面半徑為6米,求該容器的表面積;
(2)當(dāng)容器的高為多少米時,制造該容器的側(cè)面用料最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求的值;
(2)當(dāng)時,求證:;
(3)設(shè)函數(shù),其中為實常數(shù),試討論函數(shù)的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè),記,當(dāng)時,若方程有兩個不相等的實根, ,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com