【題目】如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )
A. 134 B. 67 C. 200 D. 250
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)e為圓錐曲線的離心率,F(xiàn)為一個焦點,l是焦點所在的對稱軸,O是l上距F較近的頂點,又M、N是l上滿足的兩點。求證:對曲線的過點M的任一條弦AB(A、B為弦的端點),直線l平分NA和NB的一組夾角。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時,.
(1)求函數(shù)的解析式;
(2)在給定坐標(biāo)系下作出函數(shù)的圖象,并根據(jù)圖象指出的單調(diào)遞增區(qū)間;
(3)若函數(shù)與函數(shù)的圖象有三個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足,且.
(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角中,角,,所對應(yīng)的邊分別為,,,,.
(1)若,求的面積;
(2)求的取值范圍,并確定其是否存在最值,如果存在最值,求出取得最值時的大小,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜好體育運動是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數(shù)為6.
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯概率不超過的前提下認(rèn)為喜好體育運動與性別有關(guān)?說明你的理由.
(參考公式: )
臨界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點,求證:
(Ⅰ)平面AB1E⊥平面B1BCC1;
(Ⅱ)A1C//平面AB1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程必過;
④在一個列聯(lián)表中,由計算得是,則有的把握確認(rèn)這兩個變量間有關(guān)系.
其中錯誤的個數(shù)是( )
本題可以參考獨立性檢驗臨界值表:
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com