分析 (I)由已知中以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形.且橢圓C過點($\sqrt{2}$,1),可得:橢圓的標準方程;
(Ⅱ)根據(jù)M(x,y)是橢圓C上的動點,P(p,0)是x軸上的定點,求出|MP|的表達式,分類討論,可得|MP|的最小值及取最小值時點M的坐標.
解答 解:(Ⅰ)由題意,以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等腰直角三角形,
所以 b=c,a2=2b2,則橢圓C的方程為$\frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1$.
又因為橢圓C:過點A($\sqrt{2}$,1),
所以$\frac{2}{{2{b^2}}}+\frac{1}{b^2}=1$,
故a=2,b=.$\sqrt{2}$
所以橢圓的標準方程為$\frac{x^2}{4}+\frac{y^2}{2}=1$.--------------------------------------------------------4分
(Ⅱ)|MP|2=(x-p)2+y2.
因為 M(x,y)是橢圓C上的動點,
所以$\frac{x^2}{4}+\frac{y^2}{2}=1$,
故 ${y^2}=2(1-\frac{x^2}{4})=2-\frac{x^2}{2}$.
所以 ${|{MP}|^2}={(x-p)^2}+2-\frac{x^2}{2}=\frac{1}{2}{x^2}-2px+{p^2}+2=\frac{1}{2}{(x-2p)^2}-{p^2}+2$.
因為M(x,y)是橢圓C上的動點,
所以|x|≤2.
(1)若|2p|≤2,即|p|≤1,
則當x=2p 時,|MP|取最小值$\sqrt{2-{p^2}}$,
此時M$(2p,±\sqrt{2-2{p^2}})$.
(2)若p>1,則當x=2 時,|MP|取最小值|p-2|,此時M(2,0).
(3)若p<-1,則當x=-2 時,|MP|取最小值|p+2|,此時M(-2,0).-------13分
點評 本題考查的知識點是直線與橢圓的位置關系,橢圓的標準方程,二次函數(shù)的圖象和性質,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16}{9}$ | B. | $\frac{9}{16}$ | C. | -$\frac{16}{9}$ | D. | -$\frac{9}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=$\frac{7π}{12}$ | B. | x=$\frac{π}{2}$ | C. | x=$\frac{5π}{12}$ | D. | $x=\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{3}≤k≤0$ | B. | $k≤-\frac{{\sqrt{3}}}{3}$或$k=-\frac{1}{3}$ | C. | $-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}≤k≤-\frac{1}{3}$或k=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com