3.已知復(fù)數(shù)a,b∈R,i是虛數(shù)單位,若a-i與2+bi互為共軛復(fù)數(shù),則a+bi=(  )
A.2-iB.1+2iC.1-2iD.2+i

分析 由a-i與2+bi互為共軛復(fù)數(shù),即可求出a,b的值,則a+bi可求.

解答 解:∵a-i與2+bi互為共軛復(fù)數(shù),
∴a=2,b=1.
則a+bi=2+i.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x5+ax3+bx-8,且f(-2017)=10,則f(2017)等于( 。
A.-26B.-18C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.對(duì)武漢市工薪階層關(guān)于“樓市限購(gòu)政策”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽查了50人,他們?cè)率杖耄▎挝唬喊僭┑念l數(shù)分布及對(duì)“樓市限購(gòu)政策”贊成人數(shù)如表:
月收入(百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)3812421
(1)從這50人是否贊成“樓市限購(gòu)政策”采取分層抽樣,抽取一個(gè)容量為10的樣本,問樣本中贊成與不贊成“樓市限購(gòu)政策”的人數(shù)各有多少名?
(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2*2的列聯(lián)表,并回答是否有95%的把握認(rèn)為月收入以55百元為分界點(diǎn)對(duì)“樓市限購(gòu)政策”的態(tài)度有差異?
月收入低于55百元人數(shù)月收入不低于55百元人數(shù)合計(jì)
贊成a=27b=330
不贊成c=13d=720
合計(jì)401040
(參考公式:${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P( K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$y=\sqrt{1-x}$的定義域是( 。
A.{x|0≤x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知全集U=R,集合A={x|x<a或x>2-a,(a<1)},集合B={x|$tan(πx-\frac{π}{3})=-\sqrt{3}\}$.
(Ⅰ)求集合∁UA與B;
(Ⅱ)當(dāng)-1<a≤0時(shí),集合C=(∁UA)∩B恰好有3個(gè)元素,求集合C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x=1時(shí),f(x)取極小值-2.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)解關(guān)于x的不等式f(x)>5mx2-(4m2+3)x(m∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在$(0\;,\;\frac{π}{2})$上的函數(shù)f(x),f'(x)是它的導(dǎo)函數(shù),且恒有f(x)•tanx+f'(x)<0成立,則( 。
A.$\sqrt{2}f(\frac{π}{3})>f(\frac{π}{4})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{6})$C.$f(\frac{π}{3})>\sqrt{3}f(\frac{π}{6})$D.$\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(a,b)=ax+by,如果1≤f(1,1)≤2,且-1≤f(1,-1)≤1,試求f(2,1)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},(x<2)\\ f(x-2),\;\;(x≥2)\end{array}$,則f(5)的值為( 。
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案