在各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,首項(xiàng)為3,前3項(xiàng)和為21,則a3+a4+a5=( )
A.33 B.72 C.84 D.189
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a4+a5=12,則S7的值為( )
A.28 B.42 C.56 D.14
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知每項(xiàng)均大于零的數(shù)列{an}中,首項(xiàng)a1=1且前n項(xiàng)和Sn滿足Sn-Sn-1=2 (n∈N*且n≥2),則a81=( )
A.641 B.640 C.639 D.638
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)A(n,)(n∈N*)總在直線y=x+上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn= (n∈N*),試問(wèn)數(shù)列{bn}中是否存在最大項(xiàng),如果存在,請(qǐng)求出;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在由正數(shù)組成的等比數(shù)列{an}中,設(shè)x=a5+a10,y=a2+a13,則x與y的大小關(guān)系是( )
A.x=y B.x≥y C.x≤y D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=-18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得Sn≥2013?若存在,求出符合條件的所有n的集合;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知a>b>0,給出下列四個(gè)不等式:①a2>b2;②2a>2b-1;③>-;④a3+b3>2a2b.
其中一定成立的不等式為( )
A.①②③ B.①②④
C.①③④ D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com