已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)設(shè),,且,證明:.

(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;極小值,無(wú)極大值。(2)詳見(jiàn)解析

解析試題分析:(1)先求導(dǎo),再令導(dǎo)數(shù)大于0的函數(shù)的增區(qū)間,令導(dǎo)數(shù)小于0得函數(shù)的減區(qū)間,根據(jù)函數(shù)的單調(diào)性可得函數(shù)的極值。(2)即證,不妨設(shè),問(wèn)題可轉(zhuǎn)化為,令,令,用導(dǎo)數(shù)求其最值,證其最大值小于0即可。
試題解析:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3c/8/hqd5r.png" style="vertical-align:middle;" />

 ∴;令 ∴
的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是
極小值,無(wú)極大值
(2)證明:不妨設(shè)



兩邊同除以得,
,則,即證:


,
, 上單調(diào)遞減,所以
,即恒成立
上是減函數(shù),所以
得證
所以成立
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值最值問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
⑴求函數(shù)處的切線方程;
⑵當(dāng)時(shí),求證:;
⑶若,且對(duì)任意恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

經(jīng)銷商用一輛型卡車將某種水果運(yùn)送(滿載)到相距400km的水果批發(fā)市場(chǎng).據(jù)測(cè)算,型卡車滿載行駛時(shí),每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費(fèi)外,人工工資、車損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為7.5元/L.
(1)設(shè)運(yùn)送這車水果的費(fèi)用為(元)(不計(jì)返程費(fèi)用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運(yùn)送這車水果的費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),函數(shù)圖像上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中,是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對(duì)任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間(1,4)內(nèi),另一個(gè)在區(qū)間[1,4]外,求a的取值范圍;
(3)已知,且函數(shù)在R上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個(gè)不同的極值點(diǎn).其極小值為M,試比較2M與一3的大小,并說(shuō)明理由;
(3)設(shè)q>p>2,求證:當(dāng)x∈(p,q)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)求的單調(diào)區(qū)間;
(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù),若對(duì)于,,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案