設(shè)函數(shù)f(x)=x3-
92
x2+6x-a
,
(1)對(duì)于任意實(shí)數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.
分析:(1)先求函數(shù)f(x)的導(dǎo)數(shù),然后求出f'(x)的最小值,使f'(x)min≥m成立即可.
(2)若欲使方程f(x)=0有且僅有一個(gè)實(shí)根,只需求出函數(shù)的極大值小于零,或求出函數(shù)的極小值大于零即可.
解答:解:(1)f′(x)=3x2-9x+6=3(x-1)(x-2),
因?yàn)閤∈(-∞,+∞),f′(x)≥m,
即3x2-9x+(6-m)≥0恒成立,
所以△=81-12(6-m)≤0,
m≤-
3
4
,即m的最大值為-
3
4

(2)因?yàn)楫?dāng)x<1時(shí),f′(x)>0;
當(dāng)1<x<2時(shí),f′(x)<0;當(dāng)x>2時(shí),f′(x)>0;
所以當(dāng)x=1時(shí),f(x)取極大值f(1)=
5
2
-a
;
當(dāng)x=2時(shí),f(x)取極小值f(2)=2-a;
故當(dāng)f(2)>0或f(1)<0時(shí),
方程f(x)=0僅有一個(gè)實(shí)根、解得a<2或a>
5
2
點(diǎn)評(píng):本題主要考查了一元二次函數(shù)恒成立問(wèn)題,以及函數(shù)與方程的思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-(
12
)x-2
,則其零點(diǎn)所在區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-(
1
2
)x-2
,則其零點(diǎn)所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-tx+
t-1
2
,t∈R

(I)試討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性:
(II)求最小的實(shí)數(shù)h,使得對(duì)任意x∈[0,1]及任意實(shí)數(shù)t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x
3
 
-3a
x
2
 
+3bx
的圖象與直線(xiàn)12x+y-1=0相切于點(diǎn)(1,-11).
(I)求a,b的值;
(II)如果函數(shù)g(x)=f(x)+c有三個(gè)不同零點(diǎn),求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案