【題目】已知為拋物線的焦點,為其標(biāo)準(zhǔn)線與軸的交點,過的直線交拋物線,兩點,為線段的中點,且,則__________

【答案】8.

【解析】分析:求得拋物線的焦點和準(zhǔn)線方程,可得E的坐標(biāo),設(shè)過F的直線為y=k(x-1),代入拋物線方程y2=4x,運用韋達(dá)定理和中點坐標(biāo)公式,可得M的坐標(biāo),運用兩點的距離公式可得k,再由拋物線的焦點弦公式,計算可得所求值.

詳解:F(1,0)為拋物線C:y2=4x的焦點,
E(-1,0)為其準(zhǔn)線與x軸的交點,
設(shè)過F的直線為y=k(x-1),
代入拋物線方程y2=4x,可得
k2x2-(2k2+4)x+k2=0,
設(shè)A(x1,y1),B(x2,y2),

中點

解得k2=1,x1+x2=6,由拋物線的定義可得|AB|=x1+x2+2=8,故答案為8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnxax(a∈R).求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點,分別為橢圓的左右頂點,點上,且面積的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)的左焦點,點在直線上,過的垂線交橢圓兩點.證明:直線平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 ,
(1)若 ,求x的值;
(2)設(shè)函數(shù) ,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)有四個不同的零點,從小到大依次為,,的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青春電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機(jī)調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表

非常滿意

滿意

合計

30

合計

已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為,.

(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少

(Ⅱ)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系;

(Ⅲ)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對象,如表所示((噸)為買進(jìn)蔬菜的數(shù)量,(天)為銷售天數(shù)):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)根據(jù)上表數(shù)據(jù)在所給坐標(biāo)系中繪制散點圖,并用最小二乘法求出關(guān)于的線性回歸方程

(2)根據(jù)(Ⅰ)中的計算結(jié)果,該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,預(yù)計需要銷售多少天?

(參考數(shù)據(jù)和公式:,,, ,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為 ( )

A. 24 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年推出一種新型家用轎車,購買時費用為16.9萬元,每年應(yīng)交付保險費、養(yǎng)路費及汽油費共1.2萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元.

(I)設(shè)該輛轎車使用n年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為f(n),求f(n)的表達(dá)式;

(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費用最少)?

查看答案和解析>>

同步練習(xí)冊答案