【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間為函數(shù)的一個可等域區(qū)間.給出下列4個函數(shù):

;;

其中存在唯一可等域區(qū)間可等域函數(shù)為( )

(A)①②③ (B)②③ (C)①③ (D)②③④

【答案】B

【解析】

試題根據(jù)題意,都是的可等域區(qū)間,中,,且時遞減,在時遞增,若,則,于是,又,,是一個可等域區(qū)間,有沒有可等域區(qū)間,且呢?,則,解得,不合題意,若,則有兩個非負(fù)解,但此方程的兩解為1和,也不合題意,故函數(shù)只有一個等可域區(qū)間中函數(shù)的值域是,所以,函數(shù)上是增函數(shù),考察方程,由于函數(shù)只有兩個交點,即方程只有兩個解0和1,因此此函數(shù)只有一個等可域區(qū)間,對于,函數(shù)在定義域上是增函數(shù),若上函數(shù)有等可域區(qū)間,則,但方程無解(方程無解),故此函數(shù)無可等域區(qū)間.綜上只有②③正確,選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓的直徑,垂直圓所在的平面,是圓上的一點.

1)求證:平面 平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 邊上的中線長為3,且, .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是正方形的四棱錐中,平面,,的中點.

(1)求證:平面;

(2)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐A-BPC中,,MAB的中點,DPB的中點,且為正三角形.

1)求證:平面APC;

2)若,求三棱錐D-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記數(shù)列的前n項和為,其中所有奇數(shù)項之和為,所有偶數(shù)項之和為

是等差數(shù)列,項數(shù)n為偶數(shù),首項,公差,且,求;

若數(shù)列的首項,滿足,其中實常數(shù),且,請寫出滿足上述條件常數(shù)t的兩個不同的值和它們所對應(yīng)的數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面底面,四邊形是邊長為2的菱形,,,E,F分別為AC,的中點.

(1)求證:直線EF∥平面;

(2)設(shè)分別在側(cè)棱,上,且,求平面BPQ分棱柱所成兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知橢圓,直線不過原點且不平行于坐標(biāo)軸,有兩個交點,,線段的中點為

)證明:直線的斜率與的斜率的乘積為定值;

)若過點,延長線段交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點E是棱BC的中點,,點P在平面ABCD的射影為O,F(xiàn)為棱PA上一點.

1求證:平面平面BCF;

2平面PDE,,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案