求過點A(x0,y0)且和直線AxByC=0平行的直線方程.

解:∵所求直線與直線AxByC=0平行,

∴所求直線的斜率為-(B≠0時).

又所求直線過點A(x0,y0),

由點斜式得,yy0=-(xx0),

AxByAx0By0=0為所求直線的方程(可以驗證B=0時也適合該方程).

點評:把所求直線的方程和已知直線的方程比較知:它們中含x項相同,含y項相同,只是常數(shù)項不同.因此,與直線AxByC=0平行的直線的方程可設(shè)為AxByC1=0(C1C).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點,焦點在坐標(biāo)軸上的橢圓Ω,它的離心率為
1
2
,一個焦點和拋物線y2=-4x的焦點重合,過直線l:x=4上一點M引橢圓Ω的兩條切線,切點分別是A,B.
(Ⅰ)求橢圓Ω的方程;
(Ⅱ)若在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點(x0,y0)處的橢圓的切線方程是
x0x
a2
+
y0y
b2
=1
.求證:直線AB恒過定點C;并出求定點C的坐標(biāo).
(Ⅲ)是否存在實數(shù)λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(點C為直線AB恒過的定點)若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Ω的離心率為
1
2
,它的一個焦點和拋物線y2=-4x的焦點重合.
(1)求橢圓Ω的方程;
(2)若橢圓
x2    
a2
+
 y2   
b2
=1(a>b>0)
上過點(x0,y0)的切線方程為
 x0x   
a2
+
y0y    
b2
=1

①過直線l:x=4上點M引橢圓Ω的兩條切線,切點分別為A,B,求證:直線AB恒過定點C;
②是否存在實數(shù)λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點A(
a
2
a
2
),B(
3
,1)

(1)求橢圓C的方程;
(2)已知點P(x0,y0)在橢圓C上,F(xiàn)為橢圓的左焦點,直線l的方程為x0x+3y0y-6=0.
①求證:直線l與橢圓C有唯一的公共點;
②若點F關(guān)于直線l的對稱點為Q,求證:當(dāng)點P在橢圓C上運動時,直線PQ恒過定點,并求出此定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓Ω的離心率為
1
2
,它的一個焦點和拋物線y2=-4x的焦點重合.
(1)求橢圓Ω的方程;
(2)若橢圓
x2    
a2
+
 y2   
b2
=1(a>b>0)
上過點(x0,y0)的切線方程為
 x0x   
a2
+
y0y    
b2
=1

①過直線l:x=4上點M引橢圓Ω的兩條切線,切點分別為A,B,求證:直線AB恒過定點C;
②是否存在實數(shù)λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案