分析 討論方程$\frac{{x}^{2}}{2-a}$+$\frac{{y}^{2}}{a-1}$=1表示焦點在x軸上的橢圓,即有2-a>a-1>0,以及焦點在y軸上的橢圓,即有a-1>2-a>0,解不等式即可得到所求范圍.
解答 解:方程$\frac{{x}^{2}}{2-a}$+$\frac{{y}^{2}}{a-1}$=1表示焦點在x軸上的橢圓,
即有2-a>a-1>0,解得1<a<$\frac{3}{2}$;
方程$\frac{{x}^{2}}{2-a}$+$\frac{{y}^{2}}{a-1}$=1表示焦點在y軸上的橢圓,
即有a-1>2-a>0,解得$\frac{3}{2}$<a<2.
則a的范圍是(1,$\frac{3}{2}$)∪($\frac{3}{2}$,2).
故答案為:(1,$\frac{3}{2}$)∪($\frac{3}{2}$,2).
點評 本題考查橢圓的方程的運用,考查分類討論的思想方法,以及運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
平均溫度 | -5.9 | -3.3 | 3.3 | 9.3 | 15.1 | 20.3 | 22.8 | 22.2 | 18.2 | 11.9 | 4.3 | -2.4 |
A. | y=acos$\frac{πx}{6}$ | B. | y=acos$\frac{(x-1)π}{6}$+k(a>0,k>0) | ||
C. | y=-acos$\frac{(x-1)π}{6}$+k(a>0,k>0) | D. | y=acos$\frac{πx}{6}$-3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1 | C. | $\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com