【答案】
分析:由題意畫出不等式組所代表的可行域,再有z=x+2y得到y(tǒng)=
,為使得z取最大值為3,應(yīng)該使斜率為定值
的直線在可行域內(nèi)當過y=a與x-y=0的交點時可以使目標函數(shù)恰取得最大值,并令最大值為3,解出即可.
解答:解:又不等式組畫出如下圖形:
由題意畫出可行域為圖示的封閉三角形這一陰影圖形,又目標函數(shù)為:,z=x+2y 等價于得到y(tǒng)=
,由該式子可以知道該直線的斜率為定值-
,當目標函數(shù)代表的直線在可行域內(nèi)任意平行移動當過直線y=x與y=a的交點(a,a)時,使得目標函數(shù)取最大值,故即令z=a+2a=3⇒a=1.
故答案為:1.
點評:此題考查了又不等式準確畫出可行域,還考查了直線的方程及解決問題時的數(shù)形結(jié)合與方程的思想.