【題目】已知數(shù)列{an}滿足:a1= ,a2= ,2an=an+1+an﹣1(n≥2,n∈N),數(shù)列{bn}滿足:b1<0,3bn﹣bn﹣1=n(n≥2,n∈R),數(shù)列{bn}的前n項(xiàng)和為Sn .
(1)求證:數(shù)列{bn﹣an}為等比數(shù)列;
(2)求證:數(shù)列{bn}為遞增數(shù)列;
(3)若當(dāng)且僅當(dāng)n=3時(shí),Sn取得最小值,求b1的取值范圍.
【答案】
(1)解:∵2an=an+1+an﹣1(n≥2,n∈N),
∴{an}是等差數(shù)列.
又∵a1= ,a2= ,
∴ ,
∵ ,(n≥2,n∈N*),
∴bn+1﹣an+1=
= =
= .
又∵ ,
∴{bn﹣an}是以 為首項(xiàng),以 為公比的等比數(shù)列.
(2)證明:∵bn﹣an=(b1﹣ )( )n﹣1, .
∴ .
當(dāng)n≥2時(shí),bn﹣bn﹣1= .
又b1<0,∴bn﹣bn﹣1>0.
∴{bn}是單調(diào)遞增數(shù)列.
(3)解:∵當(dāng)且僅當(dāng)n=3時(shí),Sn取最小值.
∴ ,即 ,
∴b1∈(﹣47,﹣11)
【解析】(1)由已知得{an}是等差數(shù)列, ,bn+1﹣an+1= = .由此能證明{bn﹣an}是以 為首項(xiàng),以 為公比的等比數(shù)列.(2)由 .得當(dāng)n≥2時(shí),bn﹣bn﹣1= .由此能證明{bn}是單調(diào)遞增數(shù)列.(3)由已知得 ,由此能求出b1的取值范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以下三視圖中有三個(gè)同時(shí)表示某一個(gè)三棱錐,則不是該三棱錐的三視圖的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos(ωx+ )(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設(shè)α,β∈[0, ],f(5α+ )=﹣ ,f(5β﹣ )= ,求cos(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2+ax+3.
(1)當(dāng)x∈R時(shí),f(x)≥a恒成立,求a的取值范圍.
(2)當(dāng)x∈[﹣2,2]時(shí),f(x)≥a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前m項(xiàng)和為30,前2m項(xiàng)和為100,則它的前3m項(xiàng)和為( )
A.130
B.170
C.210
D.260
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷:
①從個(gè)體編號(hào)為1,2,…,1000的總體中抽取一個(gè)容量為50的樣本,若采用系統(tǒng)抽樣方法進(jìn)行抽取,則分段間隔應(yīng)為20;
②已知某種彩票的中獎(jiǎng)概率為 ,那么買1000張這種彩票就一定會(huì)中獎(jiǎng)(假設(shè)該彩票有足夠的張數(shù));
③從裝有2個(gè)紅球和2個(gè)黒球的口袋內(nèi)任取2個(gè)球,恰有1個(gè)黒球與恰有2個(gè)黒球是互斥但不對(duì)立的兩個(gè)事件;
④設(shè)具有線性相關(guān)關(guān)系的變量的一組數(shù)據(jù)是(1,3),(2,5),(3,6),(6,8),則它們的回歸直線一定過點(diǎn)(3, ).
其中正確的序號(hào)是( )
A.①、②、③
B.①、③、④
C.③、④
D.①、③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,橢圓上任意一點(diǎn)到右焦點(diǎn)距 離的最大值為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn)滿足(為坐標(biāo)原點(diǎn)),求四邊形面積的最大值,并求此時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)與直線x+y﹣1=0相交于A、B兩點(diǎn),若a∈[ , ],且以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,則橢圓離心率e的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com