分析 過N作l的垂線,垂足為Q,則|NF|=|NQ|,|PF|=|PM|,求出P的坐標,可得cos∠MNQ=$\frac{\sqrt{5}}{5}$,即可得到$\frac{|MN|}{|NF|}$.
解答 解:拋物線C:y2=4x的焦點為F(1,0),
過N作l的垂線,垂足為Q,則|NF|=|NQ|,
∵PF的斜率為$\frac{3}{4}$,∴可得P(4,4).
∴M(-1,4),∴cos∠MFO=$\frac{\sqrt{5}}{5}$
∴cos∠MNQ=$\frac{\sqrt{5}}{5}$
∴$\frac{|MN|}{|NF|}$=$\sqrt{5}$
故答案為:$\sqrt{5}$.
點評 本題考查了拋物線的性質(zhì),三角函數(shù)的恒等變換,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{8}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | -5 | C. | 10 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
欄目1 | 欄目2 | 合計 | |
家長 | |||
學(xué)生 | |||
合計 |
P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{ln4}{3}$,+∞) | B. | ($\frac{ln2}{3}$,+∞) | C. | ($\frac{\sqrt{3}}{2}$,+∞) | D. | ($\frac{\sqrt{e}}{3}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com