已知等差數(shù)列{an}的前n項和Sn滿足:Sn=n2+2n+a(n∈N*),則實數(shù)a=   
【答案】分析:先根據(jù)an=Sn-Sn-1求得n≥2時,數(shù)列的通項公式,進(jìn)而求得a2和a3,進(jìn)而求得公差,根據(jù)a1=S1,求得a1,利用等差數(shù)列的性質(zhì)根據(jù)公差d和a2求得a1,最后建立等式求得a.
解答:解:當(dāng)n≥2時,an=Sn-Sn-1=2n+1
∴a2=5,a3=7
∴d=7-5=2
a1=1+2+a=3+a
∵{an}為等差數(shù)列
∴a1=a2-d=3=3+a
∴a=0
故答案為:0
點評:本題主要考查了等比數(shù)列的性質(zhì).解題的關(guān)鍵是利用了an=Sn-Sn-1.考查了學(xué)生對等比數(shù)列通項公式和求和公式的理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案