函數(shù)中,的單調減區(qū)間為

[  ]
A.

(0,+∞)

B.

(0,4)和(4,+∞)

C.

(-∞,4)和(4,+∞)

D.

(-∞,+∞)

答案:C
解析:

函數(shù)


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013屆河北省高二下學期第四次月考理科數(shù)學試卷(解析版) 題型:填空題

已知函數(shù),若的單調減區(qū)間是 (0,4),則在曲線的切線中,斜率最小的切線方程是_________________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆浙江省、蘭溪一中高二下期中理科數(shù)學試卷(解析版) 題型:填空題

已知函數(shù),若的單調減區(qū)間是(0,4),則在曲線的切線中,斜率最小的切線方程是___________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省高一第二學期期中考試數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問中,∵xÎ[0, ],∴2x-Î[-,],

∴當2x-=-,即x=0時,f(x)min=-,

當2x-, 即x=時,f(x)max=1

第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當2x-=-,即x=0時,f(x)min=-,        ……………………8分

當2x-, 即x=時,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù),若的單調減區(qū)間是,則在曲線的所有切線中,斜率最小的切線方程是__________.

查看答案和解析>>

同步練習冊答案