【題目】如圖,長方體ABCD—A1B1C1D1中,試在DD1確定一點P,使得直線BD1∥平面PAC,并證明你的結論.
【答案】詳見解析.
【解析】試題分析:連接,設交于點,則為中點,連接,又為中點,所以,根據(jù)線面平行的判定定理可得結果.
試題解析:取中點,則點為所求.
證明:連接,設交于點.則為中點,連接,又為中點,所以.因為,,所以.
【方法點晴】本題主要考查線面平行的判定定理,屬于簡單題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質,即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.
科目:高中數(shù)學 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校有兩個參加國際中學生交流活動的代表名額,為此該學校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學生中人選2人做代表。
求:(1)選出的2名同學來自不同年相級部且性別同的概率;
(2)選出的2名同學都來自高中部或都來自初中部的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C:ρ2﹣4ρcosθ+1=0,直線l: (t為參數(shù),0≤α<π).
(1)求曲線C的參數(shù)方程;
(2)若直線l與曲線C相切,求直線l的傾斜角及切點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知從橢圓的一個焦點看兩短軸端點所成視角為,且橢圓經(jīng)過.
(1)求橢圓的方程;
(2)是否存在實數(shù),使直線與橢圓有兩個不同交點,且(為坐標原點),若存在,求出的值.不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點B1在底面內(nèi)的射影恰好是BC的中點,且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的側棱AA1的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項(a是常數(shù)),().
(1)求,,,并判斷是否存在實數(shù)a使成等差數(shù)列.若存在,求出的通項公式;若不存在,說明理由;
(2)設,(),為數(shù)列的前n項和,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在鈍角△ABC中,∠A為鈍角,令,若.現(xiàn)給出下面結論:
①當時,點D是△ABC的重心;
②記△ABD,△ACD的面積分別為,,當時,;
③若點D在△ABC內(nèi)部(不含邊界),則的取值范圍是;
④若點D在線段BC上(不在端點),則
⑤若,其中點E在直線BC上,則當時,.
其中正確的有(寫出所有正確結論的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com