8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x>1}\\{(4-\frac{a}{2})x-1,x≤1}\end{array}\right.$在(-∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.[4,8 )B.(4,8]C.(4,8)D.(8,+∞)

分析 由題意利用函數(shù)的單調(diào)性的性質(zhì)可得4-$\frac{a}{2}$>0,且 4-$\frac{a}{2}$-1≤1,由此求得實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x>1}\\{(4-\frac{a}{2})x-1,x≤1}\end{array}\right.$在(-∞,+∞)上單調(diào)遞增,∴4-$\frac{a}{2}$>0,且 4-$\frac{a}{2}$-1≤1,
求得4≤a<8,
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2x+asinx+3-a,x∈[0,π].
(1)求f(x)的最小值g(a);
(2)若f(x)在[0,π]上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:$sinx+\frac{4}{sinx}≥4$,命題q:“a=-1”是“直線x-y+5=0與直線(a-1)x+(a+3)y-2=0平行”的充要條件,則下列命題正確的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.等比數(shù)列{an}中的a1,a2015是函數(shù)$f(x)=\frac{1}{3}{x^3}-4{x^2}+4x-1$的極值點(diǎn),則log2a1+log2a2+…+log2a2015=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.拋物線x=ay2(a≠0)的準(zhǔn)線方程是$x=-\frac{1}{4a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點(diǎn),G、H分別是BC,CD上的點(diǎn),且$CG=\frac{1}{3}BC$.$CH=\frac{1}{3}DC$,則直線FH與直線EG( 。
A.平行B.相交C.異面D.垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點(diǎn)P是直線2x-y+3=0上的一個(gè)動(dòng)點(diǎn),定點(diǎn)M(-1,2),Q,是線段PM延長線上的一點(diǎn),且PM=MQ,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題“a>-5,則a>-8”以及它的逆命題、否命題、逆否命題,真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知log2(9m-2)>0,則m的取值范圍是($\frac{1}{3}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案