已知下列三個命題①方程x2-x+2=0的判別式小于或等于零;②矩形的對角線互相垂直且平分;③2是質(zhì)數(shù),其中真命題是(  )
A.①和②B.①和③C.②和③D.只有①
對于①△<0,由于方程x2-x+2=0的判別式小于或等于零是p或q的形式,由復合命題的真值表可知為真命題;②矩形的對角線互相垂直且平分是p且q的形式,而且p為假命題且q為真命題,由復合命題的真值表可知為假命題;③2是質(zhì)數(shù),是真命題.
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點,且
OA
OB
OC
,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•陜西一模)下列三個結(jié)論中
①命題p:“對于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-4).你認為正確的結(jié)論序號為
①②
①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①凈A,B,C三種個體按3:1:2的比例分層抽樣調(diào)查,如果抽取的A個體為9個,則樣本容易為30;
②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;
③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;
④已知具有線性相關關系的兩個變量滿足的回歸直線方程為y=1-2x.則x每增加1個單位,y平均減少2個單位;
⑤統(tǒng)計的10個樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在[114.5,124.5)內(nèi)的頻率為0.4
其中真命題為(  )
A、①②④B、②④⑤C、②③④D、③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高三上學期第一次聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題

給出下列五個命題:

①將三種個體按的比例分層抽樣調(diào)查,如果抽取的個體為9個,則樣本容量為30;

②一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;

③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5,6,9,10,5,那么這兩組數(shù)據(jù)中比較穩(wěn)定的是甲;

④已知具有相關關系的兩個變量滿足的回歸直線方程為,則每增加1個單位,平均減少2個單位;

⑤統(tǒng)計的10個樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4.

其中真命題為(     )

A.①②④    B.②④⑤   C.②③④   D.③④⑤

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆海南瓊海市高二下學期第一次月考理科數(shù)學卷(解析版) 題型:填空題

下列五個命題:

①對于回歸直線方程時,.

②頻率分布直方圖中各小長方形的面積等于相應各組的頻數(shù).

③若單調(diào)遞增,則.

④樣本的平均值為,方差為,則 的平均值為,方差為.

⑤甲、乙兩個乒乓球運動員進行乒乓球比賽,已知每一局甲勝的概率為0.6,乙勝的概率為0.4,比賽時可以用三局二勝或五局三勝制,相對于用五局三勝制,三局二勝制乙獲勝的可能性更大.

其中正確結(jié)論的是         (填上你認為正確的所有序號).

 

查看答案和解析>>

同步練習冊答案