已知數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足.

(1)求數(shù)列的通項(xiàng)公式; 

(2)設(shè),數(shù)列的前項(xiàng)和為,求的取值范圍.

 

【答案】

(1);(2)

【解析】

試題分析:(1)由已知得,再利用的關(guān)系,將其轉(zhuǎn)化為關(guān)于的遞推式,得,故數(shù)列是公比為2的等比數(shù)列,進(jìn)而求其通項(xiàng)公式,等差數(shù)列中,由于知道兩項(xiàng),先求首項(xiàng)和公差,進(jìn)而求通項(xiàng)公式;(2)求數(shù)列前n項(xiàng)和,先考慮其通項(xiàng)公式,根據(jù)通項(xiàng)公式的特點(diǎn),選擇相應(yīng)的求和方法,該題,故可采取裂項(xiàng)相消法,求得,看作自變量為的函數(shù),進(jìn)而求值域得的取值范圍.

試題解析:(1)∵的等差中項(xiàng),∴,當(dāng)時(shí),,∴

當(dāng)時(shí),, ∴ ,即  

∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,∴,設(shè)的公差為,

 ,,∴,∴

(2),∴

,∵  ,∴,

,∴數(shù)列是一個(gè)遞增數(shù)列   ∴.

綜上所述,

考點(diǎn):1、等差數(shù)列的通項(xiàng)公式和等差中項(xiàng);2、等比數(shù)列的通項(xiàng)公式;3、數(shù)列求和.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

已知數(shù)列的前項(xiàng)和為,若

(Ⅰ)求證是等差數(shù)列,并求出的表達(dá)式;

(Ⅱ) 若,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列的前項(xiàng)和為,求這個(gè)數(shù)列的通項(xiàng)公式.這個(gè)數(shù)列是等差數(shù)列嗎?如果是,它的首項(xiàng)與公差分別是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(非一級(jí)校) 題型:解答題

(本題滿分13分)
已知數(shù)列的前項(xiàng)和為,滿足.
(Ⅰ)證明:數(shù)列為等比數(shù)列,并求出
(Ⅱ)設(shè),求的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省瀘縣二中高2013屆春期重點(diǎn)班第一學(xué)月考試數(shù)學(xué)試題 題型:解答題

(本小題14分)已知數(shù)列{}的前項(xiàng)和為,且=);=3
),
(1)寫出;
(2)求數(shù)列{},{}的通項(xiàng)公式
(3)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前項(xiàng)和為,且

(1)求數(shù)列的通項(xiàng)公式;

(2)令,數(shù)列的前項(xiàng)和為,若不等式 對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案