已知三個互不重合的平面 ,給出下列命題:
                   ②
③若                 ④若
其中正確命題的個數(shù)為( ).
A.1B.2C.3D.4
C

試題分析:①如圖三棱錐中,底面是正三角形,側(cè)棱,所以①錯誤;

,,,即;
,,又,;
③由④得一定相交,又,;又,;
故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐的底面為菱形,,且,,分別是的中點.
(1)求證:∥平面
(2)過作一平面交棱于點,若二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,的中點.

(1)求證:平面;
(2)求證:平面平面;
(3)求直線BE與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1,AB=2,點E在棱AB上.
(1)證明:D1E⊥A1D;
(2)當E點為線段AB的中點時,求異面直線D1E與AC所成角的余弦值;
(3)試問E點在何處時,平面D1EC與平面AA1D1D所成二面角的平面角的余弦值為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:正△ABC與Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.
(1)求證:AB⊥CD;
(2)求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中點.
(I)求證:A1B平面AEC1;
(II)若棱AA1上存在一點M,滿足B1M⊥C1E,求AM的長;
(Ⅲ)求平面AEC1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知軸對稱平面五邊形ADCEF(如圖1),BC為對稱軸,AD⊥CD,AD=AB=1,CD=BC=
3
,將此圖形沿BC折疊成直二面角,連接AF、DE得到幾何體(如圖2).
(1)證明:AF平面DEC;
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1中,點P是直線BC1的動點,則下列四個命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成角的大小不變;
③二面角P-AD1-C的大小不變:
其中正確的命題有____      .(把所有正確命題的編號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)A,B,C,D是空間四個不同的點,在下列命題中,不正確的是(  )
A.若AC與BD共面,則AD與BC共面
B.若AC與BD是異面直線,則AD與BC是異面直線
C.若AB=AC,DB=DC,則AD=BC
D.若AB=AC,DB=DC,則AD⊥BC

查看答案和解析>>

同步練習冊答案