【題目】在一次體育水平測試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對(duì)于此次測試,給出下列三個(gè)結(jié)論:

①甲校學(xué)生成績的優(yōu)秀率大于乙校學(xué)生成績的優(yōu)秀率;

②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;

③甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號(hào)是____________.

【答案】②③

【解析】

根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.

不能確定甲乙兩校的男女比例,故①不正確;

因?yàn)榧滓覂尚5哪猩膬?yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;

因?yàn)椴荒艽_定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系,故③正確.

故答案為:②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每次試驗(yàn)的成功率為p(0<p<1),重復(fù)進(jìn)行10次試驗(yàn),其中前6次都未成功,后4次都成功的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意實(shí)數(shù)a、b、c,在下列命題中,真命題是(
A.“ac>bc”是“a>b”的必要條件
B.“ac=bc”是“a=b”的必要條件
C.“ac>bc”是“a>b”的充分條件
D.“ac=bc”是“a=b”的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2(m﹣1)x﹣5m﹣2,若函數(shù)f(x)的兩個(gè)零點(diǎn)x1 , x2滿足x1<1,x2>1,則實(shí)數(shù)m的取值范圍是(
A.(1,+∞)
B.(﹣∞,1)
C.(﹣1,+∞)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+2x,則f′(0)=(
A.0
B.﹣4
C.﹣2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明“若x+y≤0則x≤0或y≤0”時(shí),應(yīng)假設(shè)(
A.x>0或y>0
B.x>0且y>0
C.xy>0
D.x+y<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從5名男生和4名女生中選出4人去參加辯論比賽,4人中既有男生又有女生的不同選法共有(
A.80種
B.100種
C.120種
D.126種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={1,2,a},B={2,3},若BA,則實(shí)數(shù)a的值是(
A.1
B.2
C.3
D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理:“冪勢(shì)既同,則積不容異”.它是中國古代一個(gè)涉及幾何體體積的問題,意思是兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)A,B為兩個(gè)同高的幾何體,p:A,B的體積不相等,q:A,B在等高處的截面積不恒相等,根據(jù)祖暅原理可知,q是p的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案