分析 利用函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+2015x+sinx,x≥0}\\{-{x^2}+λx+cos(x+α),x<0}\end{array}}$是奇函數(shù)的性質(zhì)可求得λ與α,再利用三角函數(shù)的誘導公式即可求得答案.
解答 解:∵f(x)=$\left\{{\begin{array}{l}{{x^2}+2015x+sinx,x≥0}\\{-{x^2}+λx+cos(x+α),x<0}\end{array}}$是奇函數(shù),
∴當x<0時,-x>0,
∴f(-x)=(-x)2+2015(-x)+sin(-x)=-f(x)=-[-x2+λx+cos(x+α)],
∴λ=2015,且sinx=cos(α+x),
∴α=2kπ-$\frac{π}{2}$(k∈Z),
∴sinλα=sin2015(2kπ-$\frac{π}{2}$)=-sin(-$\frac{π}{2}$)=1.
故答案為:1.
點評 本題考查函數(shù)的奇偶性求得λ與α是關(guān)鍵,考查誘導公式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $-\sqrt{3}$ | C. | 0 | D. | $1-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | e-x+sinx | B. | -e-x+cosx | C. | e-x-sinx | D. | -e-x-cosx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5<m<15 | B. | m<-5或m>15 | C. | m<4或m>13 | D. | 4<m<13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | $\frac{π}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$,$\frac{π}{6}$ | B. | 2,$\frac{π}{3}$ | C. | 2,$\frac{π}{6}$ | D. | $\frac{1}{2}$,-$\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com