建造一個容積為8 m3,深為2 m長的游泳池,若池底和池壁的造價每平方米分別為120元和80元,則游泳池的最低總造價為______________元.

思路解析:設池底的一邊長是x m,則池底與這邊相鄰的邊長是 m,相應的總造價是120×4+2×(2x+2·)×80=?480+320(x+)≥480+320×2=1 760,故其最低總造價是1 760元.

答案:1 760

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

建造一個容積為8 m3.深為2 m的長方體形無蓋水池,如果池底和池壁的造價分別為120 元/m2和80元/m2.

(1)求總造價關于一邊長的函數(shù)解析式,并指出該函數(shù)的定義域;

(2)判斷(1)中函數(shù)在(0,2)和[2,+∞)上的單調性并用定義法加以證明;

(3)如何設計水池尺寸,才能使總造價最低.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

建造一個容積為8 m3,深為2 m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為180元和80元,那么水池的最低總造價為___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

建造一個容積為8 m3,深為2 m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為120元和80元,那么水池的最低總造價為                元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

建造一個容積為8 m3,深為2 m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為120元和80元,求水池的最低總造價.

查看答案和解析>>

同步練習冊答案