設(shè)數(shù)列中,,,判斷是不是等比數(shù)列.

答案:略
解析:

解題思路:,

,∴

,.所以不是等比數(shù)列.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W由滿足下列兩個(gè)條件的數(shù)列{an}構(gòu)成:①
an+an+2
2
an+1
;②存在實(shí)數(shù)M,使an≤M.(n為正整數(shù))
(Ⅰ)在只有5項(xiàng)的有限數(shù)列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;試判斷數(shù)列{an}、{bn}是否為集合W中的元素;
(Ⅱ)設(shè){cn}是各項(xiàng)為正數(shù)的等比數(shù)列,Sn是其前n項(xiàng)和,c3=
1
4
,S3=
7
4
,試證明{Sn}∈W,并寫出M的取值范圍;
(Ⅲ)設(shè)數(shù)列{dn}∈W,對于滿足條件的M的最小值M0,都有dn≠M(fèi)0(n∈N*).求證:數(shù)列{dn}單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)同時(shí)滿足條件:①
bn+bn+22
bn+1
(n∈N*);②bn≤M(n∈N*,M是與n無關(guān)的常數(shù))的無窮數(shù)列{bn} 叫“特界”數(shù)列.
(Ⅰ)若數(shù)列{an} 為等差數(shù)列,Sn是其前n項(xiàng)和,a3=4,S3=18,求Sn;
(Ⅱ)判斷(Ⅰ)中的數(shù)列{Sn}是否為“特界”數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù).數(shù)列滿足:,且,記數(shù)列的前項(xiàng)和為,且.求數(shù)列的通項(xiàng)公式;并判斷是否仍為數(shù)列中的項(xiàng)?若是,請證明;否則,說明理由.

(Ⅱ)設(shè)為首項(xiàng)是,公差的等差數(shù)列,求證:“數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)”的充要條件是“存在整數(shù),使”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧名校領(lǐng)航高考預(yù)測試(六)數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)數(shù)列滿足:,且,記數(shù)列的前n項(xiàng)和為,

.

(。┣髷(shù)列的通項(xiàng)公式;并判斷是否仍為數(shù)列中的項(xiàng)?若是,請證明;否則,說明理由.

(ⅱ)設(shè)為首項(xiàng)是,公差的等差數(shù)列,求證:“數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)”的充要條件是“存在整數(shù),使

 

查看答案和解析>>

同步練習(xí)冊答案