3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且經(jīng)過點(diǎn)A(1,$\frac{3}{2}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點(diǎn)且斜率不為0的直線l與橢圓C交于M,N兩不同點(diǎn),線段MN的垂直平分線交y軸于點(diǎn)P(0,y0),求y0的取值范圍.

分析 (I)利用橢圓的性質(zhì)及e=$\frac{c}{a}$,A在橢圓上,滿足橢圓方程及b2=a2-c2即可得出;
(II)分直線MN的斜率存在與不存在討論,當(dāng)MN的斜率存在時(shí),可設(shè)直線MN的方程為y=k(x-1)(k≠0),與橢圓的方程聯(lián)立,得到根與系數(shù)的關(guān)系及其中點(diǎn)坐標(biāo)公式,再由基本不等式的性質(zhì)即可得出范圍.

解答 解:(Ⅰ)設(shè)橢圓C的半焦距是c.
因?yàn)闄E圓C的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,又$\frac{1}{{a}^{2}}$+$\frac{9}{4^{2}}$=1,
b2=a2-c2=3.
所以a=2,b=$\sqrt{3}$,c=1,
故橢圓C的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(Ⅱ)當(dāng)MN⊥x軸時(shí),顯然y0=0.
當(dāng)MN與x軸不垂直時(shí),由右焦點(diǎn)為(1,0),
可設(shè)直線MN的方程為y=k(x-1)(k≠0).
由$\left\{\begin{array}{l}{y=k(x-1)}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$消去y整理得 (3+4k2)x2-8k2x+4(k2-3)=0.
設(shè)M(x1,y1),N(x2,y2),線段MN的中點(diǎn)為Q(x3,y3),
則x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$.
則x3=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{4{k}^{2}}{3+4{k}^{2}}$,y3=k(x3-1)=-$\frac{3k}{3+4{k}^{2}}$.
線段MN的垂直平分線方程為y+$\frac{3k}{3+4{k}^{2}}$=-$\frac{1}{k}$(x-$\frac{4{k}^{2}}{3+4{k}^{2}}$).
在上述方程中令x=0,得y0=$\frac{k}{3+4{k}^{2}}$=$\frac{1}{4k+\frac{3}{k}}$.
當(dāng)k<0時(shí),4k+$\frac{3}{k}$≤-4$\sqrt{3}$;當(dāng)k>0時(shí),4k+$\frac{3}{k}$≥4$\sqrt{3}$.
所以-$\frac{\sqrt{3}}{12}$≤y0<0,或0<y0≤$\frac{\sqrt{3}}{12}$.
綜上:y0的取值范圍是[-$\frac{\sqrt{3}}{12}$,$\frac{\sqrt{3}}{12}$].

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為與橢圓的方程聯(lián)立得到根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式及其基本不等式的性質(zhì)等基礎(chǔ)知識(shí)與基本技能,考查了分類討論思想方法、推理能力、計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,已知$\overrightarrow{|AB|}=\sqrt{3},\overrightarrow{|AC}|=\overrightarrow{|BC|}=1$,則 $\overrightarrow{AB}•\overrightarrow{AC}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$a+\frac{1}{a}=7$,則${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$=(  )
A.3B.9C.-3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(Ⅰ)計(jì)算0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75的值.
(Ⅱ)計(jì)算lg25+lg2lg50+2${\;}^{1+lo{g}_{2}5}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)命題p:x2+2x-3<0 q:-5≤x<1,則命題p成立是命題q成立的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,直線l:4x-5y+16=0,橢圓上是否存在一點(diǎn),它到直線l的距離最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知tanx=-1,且cosx=-$\frac{\sqrt{2}}{2}$,求x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.一平面直角坐標(biāo)系中,已知伸縮變換φ:$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$,A($\frac{1}{3}$,-2)經(jīng)過φ變換所得的點(diǎn)A′的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),0<α<$\frac{π}{2}$),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ+2cosθ=ρ(ρ≥0,0≤θ<2π),直線l與曲線C交干A,B兩點(diǎn)
(1)求證:OA⊥OB;
(2)若α=$\frac{π}{4}$,求直線與l平行的曲線C的切線方程.

查看答案和解析>>

同步練習(xí)冊答案