10.函數(shù)f(x)=log2(2-x)在x∈[0,1]上的最大值為1.

分析 由x的范圍求得2-x的范圍,再由對數(shù)函數(shù)的單調(diào)性得答案.

解答 解:∵0≤x≤1,∴-1≤-x≤0,則1≤2-x≤2,
∴0≤log2(2-x)≤1.
即函數(shù)f(x)=log2(2-x)在x∈[0,1]上的最大值為1.
故答案為:1.

點(diǎn)評 本題考查復(fù)合函數(shù)值域的求法,考查了對數(shù)函數(shù)的單調(diào)性,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,2a+1]上單調(diào),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[-1,1]時,y=f(x)圖象恒在y=2x+2m+1的圖象上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓G:$\frac{{x}^{2}}{4}$+y2=1,過點(diǎn)(0,2)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn),
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率.
(2)O為坐標(biāo)原點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=x2+x在區(qū)間[1,2]上的平均變化率為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3+alnx
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a=0時,求曲線y=f(x)過點(diǎn)(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=loga(x+3)(a>0,a≠1)的圖象過定點(diǎn)A,若點(diǎn)A也在函數(shù)f(x)=3x+b的圖象上,則f(log32)=$\frac{17}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{-{x}^{2}+ax-1,x≥1}\end{array}\right.$是(-∞,+∞)上的減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知命題p:(x+2)(x-10)≤0,命題q:1-m≤x≤1+m,m>0,若?q是?p的必要不充分條件,求實(shí)數(shù)m的取值范圍.
(2)已知命題p:關(guān)于x的不等式x2+2ax+4>0對一切x∈R恒成立,命題q:函數(shù)f(x)=(3-2a)x是增函數(shù),若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知三角形的三邊長分別為$a,b,\sqrt{{a^2}+{b^2}+\sqrt{3}ab}$,則三角形的最大內(nèi)角是(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊答案