已知函數(shù),(其中).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間內有兩個零點,求正實數(shù)a的取值范圍;(Ⅲ)求證:當時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)
(Ⅰ)極小值為,無極大值(Ⅱ)(Ⅲ)問題等價于.由(Ⅰ)知的最小值為.設,得在上單調遞增,在上單調遞減.∴,
∵=,∴,∴,故當時,
解析試題分析:(Ⅰ),
∴(,),
由,得,由,得,
故函數(shù)在上單調遞減,在上單調遞增,
所以函數(shù)的極小值為,無極大值. 4分
(Ⅱ)函數(shù),
則,
令,∵,解得,或(舍去),
當時,,在上單調遞減;
當時,,在上單調遞增.
函數(shù)在區(qū)間內有兩個零點,
只需即∴
故實數(shù)a的取值范圍是. 9分
(Ⅲ)問題等價于.由(Ⅰ)知的最小值為.
設,得在上單調遞增,在上單調遞減.
∴,
∵=,
∴,∴,故當時,. 14分
考點:函數(shù)極值最值
點評:求函數(shù)極值最值都需要首先找到函數(shù)的單調區(qū)間,第二問將函數(shù)存在零點轉化為最值邊界值的范圍,第三問將不等式恒成立問題轉化為求函數(shù)最值問題,這兩種轉化是函數(shù)綜合題中經常考到的
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f (x)=x3+(1-a)x2-3ax+1,a>0.
(Ⅰ) 證明:對于正數(shù)a,存在正數(shù)p,使得當x∈[0,p]時,有-1≤f (x)≤1;
(Ⅱ) 設(Ⅰ)中的p的最大值為g(a),求g(a)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)已知函數(shù)y=ln(-x2+x-a)的定義域為(-2,3),求實數(shù)a的取值范圍;
(2)已知函數(shù)y=ln(-x2+x-a)在(-2,3)上有意義,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知y=f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x+x2.
(1)求x>0時,f(x)的解析式;
(2)若關于x的方程f(x)=2a2+a有三個不同的解,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com