【題目】某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:
(Ⅰ)依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?/span>86分的同學(xué)至少有一個(gè)被抽中的概率;
(Ⅲ)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
下面臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:其中)
【答案】(Ⅰ)甲班高等數(shù)學(xué)成績集中于60-90分之間,而乙班數(shù)學(xué)成績集中于80-100分之間,所以乙班的平均分高.
(Ⅱ) ;
(Ⅲ)在犯錯(cuò)誤的概率不超過0.025的前提下可以認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)。
【解析】
試題分析:(Ⅰ)甲班高等數(shù)學(xué)成績集中于60-90分之間,而乙班數(shù)學(xué)成績集中于80-100分之間,所以乙班的平均分高 3分
(Ⅱ)記成績?yōu)?6分的同學(xué)為,其他不低于80分的同學(xué)為
“從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué)”的一切可能結(jié)果組成的基本事件有:
一共15個(gè),
“抽到至少有一個(gè)86分的同學(xué)”所組成的基本事件有:共9個(gè), 5分
故 7分
(Ⅲ)
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | 3 | 10 | 13 |
不優(yōu)秀 | 17 | 10 | 27 |
合計(jì) | 20 | 20 | 40 |
9分
,因此在犯錯(cuò)誤的概率不超過0.025的前提下可以認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)。 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:(x+1)(x-5)≤0,命題q:1-m≤x<1+m(m>0).
(1)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(2)若m=5,如果p和q有且僅有一個(gè)真命題,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=23x.
(1)證明:f(x)-g(x)=23-x,并求函數(shù)f(x),g(x)的解析式;
(2)解關(guān)于x不等式:g(x2+2x)+g(x-4)>0;
(3)若對(duì)任意x∈R,不等式f(2x)≥mf(x)-4恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.
(1)記“函數(shù)為上的偶函數(shù)”為事件,求事件的概率;
(2)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)內(nèi)有一塊以為圓心半徑為20米的圓形區(qū)域.廣場(chǎng),為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn),分別在圓周上;觀眾席為梯形內(nèi)且在圓外的區(qū)域,其中,,且,在點(diǎn)的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)處的距離都不超過60米.設(shè).
(1)求的長(用表示);
(2)對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動(dòng)的情況,某中學(xué)一課外活動(dòng)小組在學(xué)校高一年級(jí)進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.
(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為性別與是否為類學(xué)生有關(guān)系?
類 | 類 | 合計(jì) | |
男 | 110 | ||
女 | 50 | ||
合計(jì) |
(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣ x,(a>0). (Ⅰ)若a=3,解關(guān)于x的不等式f(x)<0;
(Ⅱ)若對(duì)于任意的實(shí)數(shù)x,不等式f(x)﹣f(x+a)<a2+ 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,三邊a,b,c所對(duì)的角分別為A,B,C,設(shè)函數(shù)f(x)=sin2x+cos2x,且f()=2.
(1)若acosB+bcosA=csinC,求角B的大小;
(2)記g(λ)=|+λ|,若||=||=3,試求g(λ)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(0,2015]內(nèi)的所有“優(yōu)數(shù)”的和為( 。
A.1024
B.2012
C.2026
D.2036
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com