精英家教網 > 高中數學 > 題目詳情

【題目】已知函數, , 為自然對數的底數).

(1)試討論函數的極值情況;

(2)證明:當時,總有.

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)求定義域內的所有根;判斷的根左右兩側值的符號即可得結果;(2)當時, ,研究函數的單調性,兩次求導,可證明內為單調遞增函數,進而可得當時, ,即可得結果.

試題解析:(1)的定義域為,

.

①當時, ,故內單調遞減, 無極值;

②當時,令,得;令,得.

處取得極大值,且極大值為, 無極小值.

(2)證法一:當時, .

設函數 ,

.記

.

變化時, , 的變化情況如下表:

由上表可知

,

,知

所以,

所以,即.

所以內為單調遞增函數.

所以當時, .

即當時, .

所以當時,總有.

證法二:當時, .

因為,故只需證.

時, 成立;

時, ,即證.

,則由,得.

內, ;

內, ,

所以.

故當時, 成立.

綜上得原不等式成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知集合A={x|3≤x<6},B={y|y=2x , 2≤x<3},U=R.
(1)求A∪B;
(2)求(UA)∩B.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知圓的參數方程為為參數),以直角坐標系的原點為極點, 軸的非負半軸為極軸,建立極坐標系,直線的極坐標方程為.

(Ⅰ)將圓的參數方程化為普通方程,再化為極坐標方程;

(Ⅱ)若點在直線上,當點到圓的距離最小時,求點的極坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一組數據x1 , x2 , x3 , x4 , x5的平均數是2,方差是 ,那么另一組數據3x1﹣2,3x2﹣2,3x3﹣3,3x4﹣2,3x5﹣2的平均數和方差分別為(
A.2,
B.4,3
C.4,
D.2,1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=x+ 有如下性質:如果常數t>0,那么該函數在 上是減函數,在 上是增函數.
(1)已知f(x)= ,x∈[﹣1,1],利用上述性質,求函數f(x)的單調區(qū)間和值域;
(2)對于(1)中的函數f(x)和函數g(x)=﹣x﹣2a,若對任意x1∈[﹣1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,左焦點為F(﹣1,0),過點D(0,2)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的標準方程;
(2)求k的取值范圍;
(3)在y軸上,是否存在定點E,使 恒為定值?若存在,求出E點的坐標和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣(a+2)x+alnx.
(1)當a=1時,求函數f(x)的極值;
(2)設定義在D上的函數y=g(x)在點P(x0 , y0)處的切線方程為l:y=h(x).當x≠x0時,若 >0在D內恒成立,則稱P為函數y=g(x)的“轉點”.當a=8時,問函數y=f(x)是否存在“轉點”?若存在,求出“轉點”的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)對任意的x∈R都有f′(x)>f(x)恒成立,則(
A.3f(ln2)>2f(ln3)
B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)
D.3f(ln2)與2f(ln3)的大小不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,曲線,曲線.以極點為坐標原點,極軸為軸正半軸建立平面直角坐標系,曲線的參數方程為為參數).

(1)求的直角坐標方程;

(2)交于不同的四點,這四點在上排列順次為,求的值.

查看答案和解析>>

同步練習冊答案