【題目】已知數(shù)列滿(mǎn)足,且對(duì)任意非負(fù)整數(shù)均有:

(1)求;

(2)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng);

(3)令,求證:

【答案】(1), ;(2);(3)證明見(jiàn)解析.

【解析】試題分析:(1)對(duì)mn賦值,想方設(shè)法將條件變出.為了得到,顯然令m=n即可.

為了得到,令m=1,n0即可.

2)首先要想辦法得相鄰兩項(xiàng)(三項(xiàng)也可)間的遞推關(guān)系.

要證數(shù)列是等差數(shù)列,只需證明為常數(shù)即可.

3)數(shù)列中有關(guān)和的不等式的證明一般有以下兩種方向,一是先求和后放縮,二是先放縮后求和.在本題中,易得

這是典型的用裂項(xiàng)法求和的題.故先求出和來(lái),然后再用放縮法證明不等式.

試題解析:(1)令, 1

,得,3

2)令,得:

,又,

數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列.

9

3

13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,某拋物線(xiàn)的頂點(diǎn)為原點(diǎn),焦點(diǎn)為圓心,經(jīng)過(guò)點(diǎn)的直線(xiàn)交圓, 兩點(diǎn),交此拋物線(xiàn)于, 兩點(diǎn),其中 在第一象限, , 在第二象限.

(1)求該拋物線(xiàn)的方程;

(2)是否存在直線(xiàn),使的等差中項(xiàng)?若存在,求直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有高級(jí)教師20人,中級(jí)教師30人,其他教師若干人,為了了解該校教師的工資收入情況,擬按分層抽樣的方法從該校所有的教師中抽取20人進(jìn)行調(diào)查.已知從其他教師中共抽取了10人,則該校共有教師人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次不等式mx2﹣(1﹣m)x+m≥0的解集為R,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ an=1(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= (1﹣Sn+1)(n∈N+),令Tn= ,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=log2 +a).
(1)當(dāng)a=1時(shí),解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范圍;
(3)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,下頂點(diǎn),且離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過(guò)點(diǎn)且斜率為的直線(xiàn)交橢圓于, 兩點(diǎn).在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(1)設(shè)上的一點(diǎn),證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面的中點(diǎn),連接 (如圖2).

(1)求證: ;

(2)求直線(xiàn)與平面所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案