在△ABC中,設(shè)
tanA
tanB
=
2c-b
b
,求A的值.
tanA
tanB
=
2c-b
b
,
根據(jù)正弦定理得
sinAcosB
sinBcosA
=
2sinC-sinB
sinB

∴sinAcosB+sinBcosA=2sinCcosA
∴sin(A+B)=2sinCcosA
∴sinC=2sinCcosA
∴cosA=
1
2

∴A=60°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)若tanA-tanB=
3
3
(1+tanA•tanB)
,求角B;
(Ⅱ)設(shè)
m
=(sinA,1)
,
n
=(3,cos2A)
,試求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)選做一題,都做時(shí)按先做的題判分,都做不加分.
(1)已知向量
m
=(2sinx,cosx-sinx),
n
=(
3
cosx,cosx+sinx)
,函數(shù)f(x)=
m
n

①求函數(shù)f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若f(
A
2
)=2
且a2=bc,試判斷△ABC的形狀.
(2)已知銳角△ABC,sin(A+B)=
3
5
,sin(A-B)=
1
5

①求證:tanA=2tanB;
②設(shè)AB=3,求AB邊上的高CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,若 
m
=(1-
2c
b
,tanA)
n
=(1,
1
tanB
)
,且
m
n

(Ⅰ)求角A的值;
(Ⅱ)若a=
3
,設(shè)角B的大小為x,△ABC的周長(zhǎng)為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知
3
(b2+c2-a2)=2bc,B=2A.
(1)求tanA;
(2)設(shè)
m
=(2sin(
π
4
-B),1),
n
=(sin(
π
4
+B),-1),求
m
n
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南省鄭州外國(guó)語(yǔ)學(xué)校高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:解答題

請(qǐng)選做一題,都做時(shí)按先做的題判分,都做不加分.
(1)已知向量,函數(shù)
①求函數(shù)f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若且a2=bc,試判斷△ABC的形狀.
(2)已知銳角
①求證:tanA=2tanB;
②設(shè)AB=3,求AB邊上的高CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案